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Abstract

Class imbalance problems, where the data of one class
(majority) greatly outnumbers another class (minority), can
cause bias and prejudice, which is either unethical or costly
or both. They occur as marketeers are pursuing and targeting
ever smaller market segments using automation with new
advances in artificial intelligence (Al) and machine learning.
High profile examples include gender and racial bias in facial
recognition software, as well as less public and transparent
cases of bias in assessments of credit worthiness, for
example. As traditional approaches have had limited success,
we present the application of a novel filter approach from
computer science to the class imbalance problem in the
marketing context. The approach blends repeated under-
sampling with majority voting ensemble type learning to create
a meta-classifier. Because of confidentiality commitments
on one hand and reproducibility requirements on the other
hand we resort to demonstrating this approach on publicly
available marketing data sets. Results demonstrate that this
approach (a) significantly improves the prediction accuracy
of the under-represented class while (b) also reducing the
gap in prediction accuracy between the two classes, which
increases marketing opportunities without the cost of bias
and prejudice.

1. Introduction

A key trend in digital marketing is the pursuit of ever smaller
market segments: From “long-tail” opportunities or “niches that
can add up” (Anderson 2006) to micro-segments (McKinsey
2016) and mobile micro-moments (Google 2015). Marketeers
have long envisioned mass customisation (Gilmore & Pine 1997),
one-to-one personalisation (Peppers et al. 1999) or segment-
of-one marketing (Edelman 1989). Ultimately, it is about fulfilling
Peter Drucker’s decade old vision of a customer-centric business
where marketing learns to “know and understand the customer
so well that the product or service fits him and sells itself” (Drucker
1973). Key enablers of this trend are (a) advances in technology
and (b) sensor data (Crosby & Schlueter Langdon 2014). The
latest technology enabler is artificial intelligence (Al) with machine
and deep learning methods.
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However, a problem has surfaced with the Al-
enabled automation of market segmentation,
targeting and tailoring of messages. It is inherent
in seeking smaller targets: heavily imbalanced
data sets. A data set is imbalanced when, for
a two-class classification problem, the data
for one class (majority) greatly outnumbers the
other class (minority). Although most of the
studies on class imbalance only look at a two-
class problem, imbalance between classes
does exist in multi-class problems too (Sun
et al. 2006, Liu & Zhou 2006). Most predictive
machine learning or data mining algorithms
assume balanced data sets and their ability to
predict the minority class deteriorates in the
presence of class imbalance. This is especially
troubling when the minority class is the class of
interest and when misclassifying examples of
the minority class causes bias, an unreasoned
judgement or prejudice, which is either unethical
or costly or both.

With the surge in popularity of Al in marketing,
the problem of imbalanced learning and bias has
drawn a significant amount of interest from the
public. Examples include the debate of gender
and racial bias in Al solutions (Leavy 2018).
Specifically, researchers at MIT have detected
both skin-type and gender biasesincommercially
released facial-analytics programs (MIT 2018).
Other much less publicised, nonetheless
troublesome examples include events affecting
ordinary consumers every day, such as rejected
or fraudulent credit card transactions.

For example, in detecting fraudulent credit card
transactions, the fraudulent transactions may
be less than 1% of the total transactions. In the
presence of such severe imbalance most data
mining algorithms would predict all instances
as belonging to the majority class and be more
than 99% accurate (Chawla et al. 2002, Woods
et al. 1993).

Many approaches have been studied to tackle
the imbalance problem but with limited success.
Most of them focus either on manipulating the
composition of the data by using sampling or
modifying the metrics used by the data mining
algorithms. This paper introduces a technique
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to the marketing field that demonstrates how
the performance of a standard data mining
algorithm can be improved by blending the
use of under-sampling with ensemble learning.
It has been tested earlier albeit outside the
marketing domain (Sikora & Raina 2017). Due to
confidentiality commitments on one hand and
for transparency on the other hand, we resort to
demonstrating the approach on public marketing
data sets collected from the UCI repository that
exhibit an imbalance ratio of nearly 90% (UCI
2016). Finally, we benchmark the performance
of this approach with results from traditional
techniques.

2. Best Practice Overview

Various techniques have been proposed to
solve the problems associated with class
imbalance (Garcia et al. 2007). Traditionally,
research on this topic has focused on solutions
both at the data and algorithm levels. These can
be broadly classified into three categories: (a)
Resampling methods for balancing the dataset,
(b) modification of existing learning algorithms,
and (c) measuring classifier performance with
different metrics.

Resampling techniques can again be broadly
classified into over-sampling and under-sampling
methods. In over-sampling, the representation
of minority examples is artificially boosted. In the
simplest case, the minority class examples are
duplicated to balance their numbers with those
of the majority class (Batista et al. 2004, Ling &
Li 1998, Drummond & Holte 2003). In another
widely used technique, Synthetic Minority Over-
sampling Technique (SMOTE) (Chawla et al.
2002, Han 2005), new minority instances are
synthetically created by interpolating between
several minority instances that lie close
together. In under-sampling (Drummond & Holte
2003), only a small subset of the majority class
instances is sampled so as to create a balanced
sample with the minority class.

3. Approach

Figure 1 illustrates how our approach combines
majority voting ensemble learning with under-
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sampling. Both methods have been used
widely before: Re-sampling (over and under
sampling) has been utilised to create balanced
data sets to address the problem of imbalance.
Ensemble learning has been applied to improve
the performance of underlying machine learning
techniques. The originality of our method
involves combining both of these techniques in
a unique way. It employs re-sampling to create
multiple balanced sets and ensemble learning
on these sets to generate a meta-classifier.

The majority class instances are randomly split
into disjoint sub-samples that are similar in size to
the minority class instances. Each majority class
sub-sample is then combined with the minority
class instances to create multiple balanced sub-
sets. The number of balanced sub-sets thus
created depends on the ratio of imbalance in the
original data set. For example, if the imbalance
ratio is 75% then three balanced sub-sets will be
created, each containing about one-third of the
majority class instances and all of the minority
class instances. Each sample is then used by
the data mining algorithm to create a classifier.
The individual classifiers are then combined into
a meta-classifier by using majority voting when
predicting instances from the test set. The test
set is created before the balanced sub-sets are
created by using stratified sampling so as to
make sure that it represents the original class
imbalance.

To illustrate this method, we focus on three
marketing data sets from the UCI Learning
Repository (UCI 2016) that had an imbalance
ratio of at least 80%. Table 1 gives the details
about the data sets used. For data sets with
more than one class we converted the problem
into a binary class by combining the minority
classes into one class.

We ran our experiments as 10-fold cross-
validation by creating 10 stratified folds of the
original data set. In each run we used one-fold
as the testing set and for our method used
the remaining 9 folds to create the balanced
training sub-sets using under-sampling as
described above. Similarly, in each run we also
applied SMOTE and over-sampling only on
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the training set consisting of the 9 folds. In all
experiments we used the decision tree learning
algorithm J48 from the Weka Machine Learning
software. We compared our approach with
using the J48 algorithm on (a) the original data
set, on (b) balanced training sets created using
SMOTE, and on (c) over-sampling. In summary,
we compare our technique with two machine
learning balancing methods with posterior
adjustment. Note that both the balancing
methods with which we compare our method
involves posterior adjustment since the testing/
validation set has been adjusted to reflect the
original data imbalance.

Figure 1. Workflow

Data Set # of Attributes | # of Instances Majority [%]
Bank Marketing 21 41,188 89
Student Alcohol 33 395 88

Red Wine 12 1,599 86

Quality

Table 1. Marketing data sets for demonstration

4. Discussion of Results

Table 2 presents the results for the total accuracy
across the four methods. All the results reported
here are average of 10 runs described earlier. We
also report the results of a paired t-test comparing
our approach with the other three traditional
methods. As can be seen, all three methods
with imbalance treatment show a drop in total
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accuracy, highlighting the trade-off in treating
the class imbalance problem.

To better study the trade-off, we look at the
accuracy of predicting the individual classes.
Since the minority class is the class of interest,
we treat it as the positive class and the majority
class as the negative class. Our goalis to improve
the prediction accuracy of the minority class. In
Table 3 we compare the prediction accuracy of
the majority class or the true negative rate, also
known as “Specificity,” defined by TN/(TN+FP)
- where TN is the true negatives, FN is the false
negatives, TP is the true positives, and FP is
the false positives. In Table 4 we compare the
prediction accuracy of the minority class or the
true positive rate, also known as “Sensitivity,”
defined by TP/(TP+FN). Our method significantly
improves the accuracy of predicting the minority
class compared to all the other methods. For the
Student Alcohol dataset it more than doubles
the prediction accuracy of the minority class
compared to all the other methods.

Marketing to “Minorities”: Mitigating Class
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Since most data mining algorithms work best on
a balanced data set, the ideal performance goal
of an algorithm should be to have high but similar
prediction accuracies for both the classes even
in the presence of class imbalance. To evaluate
this relative performance between the two
classes we combine the results from Table 3
and 4 and report the gap between the prediction
accuracies of the two classes in Table 5. Again,
our method provides the best performance in
terms of minimising the gap in performance
between the two classes.

Several mechanisms that underly our method
lead to better results. Re-sampling to create
balanced data sets reduces the bias of the
predictions away from the majority class.
Combining estimators to create a meta-
classifier reduces the variance and uncertainty
of estimating a population parameter. Every
machine learning technique also has an implicit
language bias since it is trying to fit the concept
in its representational language. By using

T-Test for Significance

Data Set Original [%] | SMOTE[%] | g, over o | o O el o P
Bank Marketing 91 90 86 86 3.44185E-16 | 6.80346E-14 ns.
Student Alcohol 86 85 85 72 4.787795E-06 | 5.01616E-05 | 9.1052E-06
Red Wine Quality 88 85 88 78 3.1158E-05 | 0.001207545 | 3.92611E-05

Table 2. Overall accuracy of the four methods

T-Test for Significance

Data Set ‘ Original [%] | SMOTE [%] Samgl‘i’sg (%] Appr;“c'h %] - .
e swore
Bank Marketing 96 93 87 85 2.88311E-23 | 8.22295E-19 n.s.
Student Alcohol 94 91 91 71 1.64195E-09 | 2.82726E-08 | 1.7609E-08
Red Wine Quality 94 87 91 77 6.36433E-08 | 0.000121534 | 8.08346E-07

Table 3. Accuracy of predicting the majority class - “Specificity”

T-Test for Significance

Data Set ‘ Original [%] | SMOTE [%] Samgl‘i’sg (%] Appr;“(:h %] . -
— i
Bank Marketing 54 65 74 94 1.99716E-18 | 6.03138E-16 | 1.26144E-16
Student Alcohol 22 36 37 78 8.4853E-07 | 1.005508E-05 | 1.22143E-05
Red Wine Quality 53 74 63 86 1.64438E-06 | 0.003636173 | 5.60162E-06

30

Table 4. Accuracy of predicting the minority class - “Sensitivity”
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T-Test for Significance

DataSet | Onigial 6] | SMOTEL] | gopmping 141 [ Approash 1%
original SMOTE
Bank Marketing 42 27 18 9 7.0803E-17 | 5.42498E-12 | 2.21019E-09
Student Alcohol 72 56 54 13 5.49945E-08 | 3.04377E-07 1.4901E-06
Red Wine Quality 41 13 29 10 6.19599E-06 n.s. 0.000375385

Table 5. Gap between the prediction accuracy of both classes

ensemble learning the way it is employed in our
method, it is possible to reduce the implicit bias
by using different machine learning algorithms
on different balanced sub-sets.

5. Implications for Marketing
Practitioners

Any experienced marketing practitioner is aware
of the dilemma determining the veracity of a
parameter or hypothesis for a small sample —
particularly in the context of micro-segmentation
(e.g., Button et al. 2013). On one hand, a sample
may end up being small to keep it representative
in the first place. On the other hand, it may be too
small to either detect findings (power and ability
to avoid type Il error or false negatives, FN — HO
wrongly confirmed) or prevent findings to be
confidently extrapolated onto alarger population.
Massively imbalanced big data present similar
challenges. The downside of ignoring class
imbalance problems is bias, embarrassment and
cost. Unfortunately, there are no easy answers.
If our results have demonstrated anything, it is
that today’s best practice or generally accepted
scholarly methods are falling short and can be
improved on.

Our approach refines use of a traditional Al
method, decision tree learning algorithm J48,
with additional data treatment:

+ Used under-sampling to create multiple
disjoint sub-sets of the majority class, which
are then combined with the minority class
instances to create balanced sub-sets of
data.

+ Applied ensemble type of learning where
a data mining algorithm is applied on
the individual sub-sets and the resulting
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classifiers are combined into a meta-classifier
by using majority voting for predicting the
test cases.

Performance has been transparently and
reproducibly established by (a) using public
marketing data sets that exhibit an imbalance
ration of nearly 90% and (b) comparing our
method with best practice, such as plain
application of J48 and two other traditional
imbalance treatments.

In essence, we have introduced a strategy
of modularisation, combining traditional Al
algorithms with novel data treatment modules.
Further refinements with additional modules may
yield more improvements. Examples include:

+ Random sampling: We have created mutually
exclusive sub-sets of the majority class. The
drawback is that the number of subsets that
have to be created then becomes fixed. In
the future we would like to try a more general
random sampling approach so that different
sub-sets can have common instances. We
can then try varying the number of sub-sets
to find the optimal number.

+ Multi-method processing: Instead of using
the same data mining algorithm on all the
sub-sets of data as we have done in this
paper, we will experiment with using different
algorithms to see if that can further improve
the results.

Great marketing minds have encouraged us
to experiment, stretch conventions, break the
rules, “think different” (Steve Jobs at Apple).
Overall, results demonstrate the rewards of
such creative experimentation: The downside of
class imbalance can be mitigated, the upside is
marketing opportunity.
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Abstract

Optimal budget allocation of a marketing mix model (MMM)
is typically solved either using steepest coordinate ascent
or metaheuristics, such as genetic algorithms. Both of
these methods suffer from speed/accuracy trade-off and
are difficult to scale for scenario analysis where many
optimisation problems need to be solved as fast as possible.
In this paper, we show that output optimisation of MMM can
be transformed to a continuous knapsack problem, which
has a suitable form for developing fast, exact, and reliable
algorithms that alleviate this trade-off.

We propose a new algorithm, which we name as Concave
and Linear Continuous Knapsack Optimiser (CaLCKO) best
suited to this transformed optimisation problem. CaLCKO
can optimise a versatile form of marketing mix models,
which is flexible enough to incorporate mixed effects,
lead/lags, carryovers, and saturation effects. We discuss
the convergence, optimality, and theoretical performance
characteristics of CaLCKO. When benchmarked against a
high-performance commercial optimisation library, we claim
an order of magnitude improvement in time to optimisation
with CaLCKO.

1. Introduction

How do sales or market share respond to marketing expenditures?
For over 40 years, market response research has produced
econometrics and time series analysis based generalisations
about the effects of marketing mix variables on sales [1]. With
the ever-increasing availability of data in terms of automated
feeds, large agencies like GroupM routinely offer marketing mix
models based on this data as a service to advertisers [2]. Thus,
a substantial number of companies have been using models of
the marketing mix response as an analytical input in their quest
to learn from the past, optimise their future media budgets and
allocate these budgets into the most profitable marketing and
media channels. Such models are often named as Marketing Mix
Models, or MMMs for short [3].

MMNMs incorporate numerous factors on the nature of advertising.
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These include current effects, carryovers,
distributed lags, saturation and competition [4].
The remaining major dimensions of advertising
that an advertiser needs to capture (geography/
market, creative, campaign messaging,
product to be advertised, and sales channel)
involve changes in the responsiveness itself
of advertising exposure. Mixed effects models
(or hierarchical linear models, without loss of
generality) inherently account for the fact that
model coefficients may vary between these
different dimensions [5]-[8] in addition to all the
other effects (carryovers, lags, and so on). Mixed
effects models also allow parameter estimation of
advertising effects in dimensional combinations
with very few observations and even under
missing data on some dimensional combinations
[9]. In [10] we provide a mathematical overview
of how we represent the data for a mixed effects
MMM in a way that incorporates all of the
defining business features of MMMSs and easily
allows generating large-scale models [11].

After developing such a marketing mix model,
the next natural step is to maximise its aggregate
predicted output to offer the best possible
marketing plan to the advertiser.

This optimisation' typically relies on steepest
coordinate ascent, which suffers from a general
speed vs. accuracy tradeoff parameterised by
step size and is not efficient enough to obtain
a timely solution and a full sensitivity analysis
around the found solution. Metaheuristics (e.g.,
genetic algorithm, particle swarm optimisation)
are another popular alternative, though those
also suffer from replicability issues, requires
workarounds that could hamper optimality
in order to suppress undesirable behavior in
the output (performance is found to decrease
with increasing budget ceteris paribus), and
still retains a degree of the speed vs. accuracy
tradeoff. It turns out that the problem can be
equivalently represented in a form receptive to
a much faster and step size-free optimisation
algorithm. Therefore, we pursue three objectives
in this work: (1) transforming the current MMM

Optimising Marketing Mix Models with Concave and
Linear Continuous Knapsack Optimiser (CaLCKO)

into a form permissive to a more efficient
optimisation procedure, (2) providing a technical
description of our proposed algorithm, and (3)
providing a theoretical, as well as a practical,
discussion on convergence, optimality, and
performance of this proposed algorithm.

To achieve these objectives, we first provide
mathematical proof that optimising a fairly
generalisable form of a mixed effects MMM
can be transformed to a continuous knapsack
problem in §2. Then in §3, we discuss the
merits of the two most popular approaches
to attack this problem: gradient ascent and
metaheuristics. Next, in §4, we describe our
proposed Concave and Linear Continuous
Knapsack Optimiser (CaLCKO) algorithm, fully
suited to the equivalent representation of the
mixed effects MMM optimisation problem as
a continuous knapsack maximisation problem
with linear and concave profit functions and
box constraints. We discuss the theoretical
and practical performance of this algorithm
compared to a high-performance commercial
optimisation library. We subsequently discuss
the challenges in optimising the marketing
mix model when some inputs have S-shaped
transformations. We conclude in §5.

2.Transforming the Problem

Our first step in proposing a new optimisation
algorithm for the marketing mix model in [10],
is to transform the problem to a form suitable
for optimisation. Here, we prove that the general
form of MMM, insofar as typically applied in
marketing industry, can be transformed to a
separable budget allocation problem with a
single budget constraint and a group of box
constraints. In the optimisation community, this
problem is referred to as a nonlinear continuous
knapsack with strictly concave and linear profit
functions and box constraints [12]. We start this
section by borrowing the current optimisation
problem from the MMM structure thoroughly
describedin[10]. Then, we propose an equivalent

"In this paper, we freely use the term optimisation to refer to the problem of mathematical optimisation of budget
allocation using marketing mix models. In particular, estimating marketing mix model parameters is not within the

scope of this research.
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new format and we prove the equivalence of this
new format (proofs are deferred to the online
supplemental appendices?). We conclude this
section with a brief discussion of the value of this
equivalence result to our task of optimisation.
To optimise the MMM, we first need an objective
function: an expression for the aggregate
predicted output. Thus, we bring Equation (2) of
[10] as Equation (1) in this paper:

Y=f(Z&)B+ f(Z &)y (Y]
In this equation, Y represents an estimation of
nx1 vector of dependent variables (e.g. sales
volume) in all time periods and combinations of
geographies, products, outlets, campaigns, and
creatives. This nx(r+1) matrix of independent
variables (e.g. marketing inputs) is represented
by Z. Mixed linear regression parameters are
presented as S and y. The matrix parameter
& is of 4x(r+1) dimension and provides model
parameters for carryover (1 - decay), lead or
lag, and functional form of the transformations,
if any. The variables and parameters with tilde
mark (~) represent the variables and parameters
corresponding to the random effect combination
(if any) each observation belongs to. Function
f:Rm)— Rm+V defined in Equation (4) in [10],
denotes an element-wise function that operates
on Zand &

(2)
and f(.) is defined as the following (eq.(5) in [10]):

(3)

where function fA() is defined in [10] as a scalar
function with parameters {, and ¢, -that operates
on elements of Z. We aIIow thls function to
assume alternative functional forms listed in
Table 1, where each of the alternatives applies
different patterns of diminishing returns and/or
saturation of marketing instruments.
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We borrow the definition of m from [10] as the
number of multidimensional combinations
(i.e., combinations of geographies, products,
outlets, campaigns, and creatives). Implicit
in this definition, without loss of generality,
is the assumption of a perfectly balanced
model where the number of observations in
the data, n, is always a multiple of the number
of multidimensional combinations, m. We can
further express p; and p, as a function of m and
n (equations 8 and 9 in [10]):

(4)

(5)

Having defined lA/ we next bring the following
definition of the optimisation problem [ P ] from
Equation (19) in [10]:

(6)

The above expression is identical to Equation
(19) in [10], except that we have used index
j instead of k for expositional clarity. In this
expression, Z is an nxr matrix of investment
lower bounds, Z is the investment upper

bound matrix of the same dimension, I is the
total budget, and 5 is an nxr matrix of cost per
unit of investment in each variable. Index j =1
corresponds to intercepts. Matrix Z includes
optimisation variables and the objective is to
maximise the sum of the elements of vector Y.

Inthis representation of the optlmlsatlon problem
[ P], each element of the vector Ydepends on all
elements of matrix Z, and the objective function

2 Available at: https://supplementary-materials.s3.us-east-2.amazonaws.com/Optimizing Marketing Mix_Models.pdf
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looks as if it cannot be broken down to additive
components corresponding to each individual
marketing input.

We claim that this sum can indeed be rearranged
so that each term is a function of each element
of Z. To illustrate our point succinctly, we first
state a simplified form of [ P ] without random
effects (i.e. one with no (~) variable). We then
show that a similar way of rearrangement can
be used to generalise the results to all marketing
mix models.

Proposition 1. Optimisation problem [ P ] for
models without random effects has the same
optimal solution as the following problem

(7)

where all elements of 9 are constants defined as
the following:

(8)

and we define the time lower and upper bounds
d,,and u, of the geometric series sum in Equation
(8) as follows:

)

(10)
Proof. The proof can be found in Appendix A.
In a similar fashion, we can generalise the above

result by incorporating variables with random
effects into the model.

Proposition 2. The general MMM optimisation

problem has the same optimal solution as the
following problem.

(11)

37 www.i-com.org

Optimising Marketing Mix Models with Concave and
Linear Continuous Knapsack Optimiser (CaLCKO)

in which @ is again a matrix of constants that we
redefined as

(12)

where d and u reflect a reordered from of
Equatlons 9) and (10) that accounts for mixed
effects:

(13)

(14)

Proof. The proof is available in Appendix B.

We invite the reader to observe the contrasts
between Equation (12) and Equation (8):

1. We have added a multiplier for random effects
(y) corresponding to each multidimensional
combination and marketing input {x}. This
multiplier generalises to models with random
effects on some variables (but not on others),
because the elements of y that are associated
with variables without random effects can be
set to zero.

2. We have introduced the upper and lower
bounds on indices i,j to (i properly
account for carryover and lead/lag effects
related to each Z, and (ii) to omit trailing/
leading observations for any mixed effect
combination.

The transformed problems [P ] and [P "] not only
share the exact structure and hence the form
of solutions of [P], they also are instances of
continuous knapsack maximisation problems
[13] with box constraints. Table 1 presents the
type of knapsack problem based on the form of
function f(-).
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Name §iC) Problem Type
Linear Z Linear Knapsack
Logarithmic In (max(Z, 1)) ContTVLthzuSself:sssack

Power Z5,0<€<1 Concave Knapsack
Exponential Concave Knapsack
S-shaped Sigmoidal Knapsack

Table 1. Element-wise functional forms to be
maximised and the corresponding problem

This taxonomy enables us to bridge algorithmic
developments in optimisation theory with our
optimisation problem. Before that, we look into
where our current practice lies; we find great
potential for improvement in terms of solution
consistency and efficiency.

3. Current Practices

In this section, we discuss the merits of the
two most popular approaches to attack this
problem: gradient ascent and metaheuristics.
Optimal budget allocation out of a marketing
mix model (MMM) response is typically solved
using steepest coordinate ascent: allocating the
budget in incremental steps to the instrument
of greatest marginal benefit. Metaheuristics
such as genetic algorithms are also popular.
Unfortunately, both approaches suffer from a
built-in accuracy/speed tradeoff, and in the case
of metaheuristics, lack quality and replicability.

3.1. Steepest Coordinate Ascent

The main idea of this algorithm is to calculate the
approximate partial derivative of the objective
function with respect to each parameter and
make a small move in the direction of the largest
partial derivative. Therefore, this algorithm
involves calculating all approximate partial
derivatives of the objective function at each
step.

Any neat implementation of the algorithm is
easy to build, can quickly clear software quality
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assurance, and has a strong intuitive appeal.
However, it has a very poor time performance due
to (i) excessive function evaluations, and (ii) the
need for increased number of steps for increased
precision. The dismal time performance makes
sensitivity analysis prohibitive (and subject to
arbitrary precision hindrance as a function of the
step size) for this algorithm.

3.2. Metaheuristics

The applied fields of science, particularly
engineering design, generate numerous complex
optimisation problems that require a suitable
solution. However, the focus on solving these
problems is usually developing a “satisficing”
solution rather than finding the global optimal.
To reach a satisfactory solution, various
“heuristic” algorithms have been developed and
used in practice. In optimisation community,
these are referred to as metaheuristics. Among
the numerous heuristic algorithms such as (1)
genetic algorithm, (2) simulated annealing, (3)
ant colony optimisation, (4) particle swarm, (5)
tabu search, and other related algorithms, we
will provide a brief introduction to the first two.

The main idea of genetic algorithm is to generate
a population of good starting solutions, called
a population, and creating a better generation
from this population at each step by genetics
operators. Since each member of the population
is made of multiple elements (chromosomes
or variables in high-dimensional data), genetic
operators are used to improve population
on average. Selection (based on the fitness/
objective function value of each member),
crossover (selecting a portion of chromosomes
from two parents and building new children), and
mutation (randomly changing one chromosome)
are most used genetic operators.

Simulated annealing borrowsitsterminology from
metallurgy, which emphasises its engineering
roots. In this method, the algorithm starts
from an initial point and utilises a mechanism
to generate neighboring points. If the new
neighbor point has a better objective function,
the algorithm moves to that point and sets it as
the new starting point. However, to avoid being
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trapped in a local optimal solution, the algorithm
accepts randomly moving to a worse feasible
point. The probability of this move is related to
a threshold and a function called acceptance
function.

These heuristic algorithms are valuable
because they can generate “good enough”
solutions  for high-dimensional problems
in a timely fashion. However, there are
multiple problem with their usage that highly
reduces their value for business cases.
A few of limitations are:

1. Most heuristic algorithms are random, which
means they highly depend on the initial
points and parameters and reproducibility of
the results requires substantial care.

2. They do not guarantee a bound on the
optimality of the found solution.

3. Because of the randomness in the
algorithms, they are not apt to sensitivity
analysis and making business inference of
the parameters. For example, the proposed
solution of a maximisation problem might be
worse with increase in the resources, which
does not make sense.

To mitigate the aforementioned problems and
avoid infeasible time performance, branch-and-
bound algorithms usually provide a good middle
ground.

4. Concave and Linear
Continuous Knapsack Optimiser
(CaLCKO)

We conjecture that efficient approaches to
exactly solve a continuous knapsack problem
with box constraints can be grouped under three
categories: (1) pegging algorithms that calculate
the value of a primal variable explicitly and a dual
variable/shadow price implicitly at each iteration
[14], (2) interior point methods that define a
penalty for constraints and use a Lagrangian
multiplier for finding the optimal value of the

39 www.i-com.org

Optimising Marketing Mix Models with Concave and
Linear Continuous Knapsack Optimiser (CaLCKO)

penalty [15], and (3) multiplier search methods,
such as Breakpoint [16], in which a Lagrangian
multiplier is calculated explicitly and decision
variables are calculated implicitly. Because the
optimisation problem we are concerned with
involves only a single dual variable associated
with the budget constraint (and the rest of the
dual variables cover box constraints), multiplier
search methods are naturally effective for our
problem.

The CaLCKO algorithm is an enhanced version
of the Breakpoint budget multiplier search
algorithm [16]. The Breakpoint algorithm itself is
an extension to EVALUATE the multiplier search
algorithm, as described in [17], accommodating
generalised box constraints. Our enhancements
ensure linear variables are incorporated together
with strictly concave transformations under one
single algorithm. While we highly recommend
the interested reader to peruse the original
paper [16] to have a better understanding of the
algorithm, we provide our brief discussion of its
workings.

We find the following facts noteworthy in our
discussion of the workings of CaLCKO (and
Breakpoint):

1. Dual variables are very easy to calculate
in this problem. Because the optimisation
problem has only one linear constraint and
the rest of the constraints are just bounds,
the shape of the dual objective function is
linear.

2. An easy way to solve a linear continuous
knapsack problemisto consideritas asorting
problem. To solve it, we define a new variable

and sort elements of x. in a

decreasing order. Then, we assign
the budget to the variables in this ordering
of x, until budget is exhausted. This can be
done in O (n log,(n)) time (although an O (n)
time algorithm for this task exists [18], it has
a large constant).

3. In principle, the unbounded knapsack

problem (i.e., where variables have no
bounds) can be potentially solved using
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the Newton's method. In the unbounded
problem, the Lagrange multiplier is the
same for all variables and equal to some

. Therefore, the dual problem in this
case is a root finding problem with a
single variable.

4. For the box bounded problem, the upper
limits and lower limits of the values effectively
enforce a valid range of Lagrange multipliers.
Therefore, the search region for the budget
constraint multiplier can be further reduced
by limiting it within this bound. This fact
is used in [16] to deliver an algorithm with
O (n log(n)) performance. Unfortunately,
naive implementation of numerical search
methods, such as Newton's method,
may not be feasible and reliable because
of discontinuities in the primal values
corresponding to a Lagrangian multiplier.
These discontinuities are caused by variable
bounds and linearly transformed variables
that are commonplace in an MMM. It is
therefore beneficial to find a range devoid of
discontinuities first.

5. The Breakpoint algorithm  assumes
differentiable functions on their domains.
Because power transformations do not have
a derivative at 0, we define their domain at 0*
without loss of generality, because variables
with power saturation function with a strictly
positive upper bound can never assume
zero investment at optimality in non-trivial
problems.

6. Because the logarithmic element-wise
functional form, In(max{1,Z}), is 0 on [0,1],
they impose a combinatorial complexity
to the problem. We further claim that no
polynomial time exact algorithm exists for this
problem as long as P+NP (proof in Appendix
C). Therefore, one can include logarithmically
transformed variables to CaLCKO only if
their lower bounds are greater than or equal
to 1. We will use the forthcoming S-shaped
optimisation algorithm for optimising the
problems with general logarithmic functions.

7. Trivial cases in which the total budget is

40 www.i-com.org

Optimising Marketing Mix Models with Concave and
Linear Continuous Knapsack Optimiser (CaLCKO)

equal to the sum of all lower bounds (optimal
is setting variables at the lower bounds), or
the total budget is equal to the sum of all
upper bounds (optimal is setting variables at
their upper bounds) are calculated before the
main body of the algorithm.

Before describing the algorithm, we define some
auxiliary variables and functions. We keep their
definitions and notations as close as possible to
[16] for brevity.

To keep these definitions succinct, we do two
slight abuses of notation:

1. We suppress index j by “unfolding” the
problem from its matrix format row-wise to
a vector format. From this point onward,
index i refers to r(i - 1)+ in prior sections.
For example, 0 refers to 0”. in prior sections.

2. We suppress §3’j, §4’j parameters as well as
the choice of the function as in Talgle 1 and
represent them with the index i on f(). From
tAhis point forward, f(Z) shall represent
fZ,. &, &) in prior sections.

We partition media investment decision variables
i€M, |M|< nxr with a linear transformation into
set L and variables with a strictly concave
transformation into set C so that CuL = M. Sets
K reflect our current knowledge as to whether
variables are fixed at their bounds:

bi is the set of variables in which the lower
bound is binding,

IK , is the set of variables in which the upper
bound is binding,

K, , is the set of variables in which the lower
bound is not binding, and

K, is the set of variables in which the upper
bound is not binding.

Our algorithm will conclude when we know
where every variable stands vis-a-vis their
bounds: at the lower bound, at the upper bound,
or strictly in between these two bounds; i.e.,
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our knowledge of the variables K satisfies the
property K, defined as the following:

(15)
We next define function F() as the marginal
return on investment of variable i € M. In other
words, it is the ratio of the rate of increase in the
objective function because of an incremental
investment in variable i to the rate of budget
consumption due to this incremental investment

(16)

where f?'(Zi):l for every i € L. In our search for
the Lagrange multiplier A that will optimise our
problem, we are naturally interested in the levels
ofthe variables at different values of the Lagrange
multiplier; i.e., inverses of F(-). Unfortunately,
this inverse function does not exist for linear
variables. The problem points have the property
of A=0/n.: we don't know whether to invest at
the lower bound, upper bound, or somewhere
in between if the optimal Lagrange multiplier
equals one of the 0/, . Therefore, we define two
tightly related pseudo-inverse functions: a lower
pseudo-inverse F where we keep investment
at the lower bound when A=6/n, and an upper
pseudo-inverse F, where we push investment to
the upper bound at A=6/,. Formally:

(17)

and
(18)

Note that the two pseudoinverses are equal
for ieC, variables with strictly concave
transformations. Next, we define lower and
upper investment functions $I_(A,K) and ¢(41K)
where each function uses the synonymous
pseudo-inverse. The definition for ¢(1K) is:
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(19)
in which the \ sign denotes the set difference
operator. The definition of the upper investment
function, qTi(/l,K), is identical to the lower
investment function, ¢(LK), except that all
F, (-) are replaced with F(). In principle both
investment functions invest at the upper or lower
bound for variable which are currently known to
be fixed at bounds, and otherwise invest at the

corresponding F pseudo-inverses at A.

Similarly, we denote ¥ (-, -) and ¥ (-, ) as upper
and lower budget slacks in accordance with the
synonymous investment function, and to the
extent of our knowledge about the investment
levels of the variables with respect to their
bounds. Therefore:

N
¥ (LK) = I-), nf($(AK)).

i=1 _

(20)
and similarly,

N A
¥ (LK) = 1), n./(6 (AK)). (21)
i=1
By definition, ¥ (1,K)<¥ (1K).
Finally, we define lower and upper bounds on
the optimal Lagrangian multiplier A" to the extent
of our knowledge, K, to squeeze it between
some A(K) <A'<A(K). The definitions are:

MK) =max {{F(l) |i€eK}u{Fu)ieK }}.  (22)

AK) = min {{F(1) | i€ K} v {F(w) i€ K, }. (23)
When necessary, these bounds will serve as a
range for the search of a feasible Lagrangian
multiplier, exhausting the budget on a range
devoid of any discontinuities (so that a numerical
root finding method, such as Newton's method,
can be readily used). We denote the set of
possible discontinuities as P in the algorithm,
and we do bisection search in a partially ordered
set to shrink the range [A(K), A(K)] as much and
as fast as possible. Having defined the above
variables and functions, we next present an
exhaustive pseudo-code for the algorithm.
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Algorithm 1 Concave and Linear Continuous
Knapsack Optimiser (CaLCKO)

Require: A vectorised function for calculating
objective K-), the pseudo-inverse functions F, (-)
and F(-), budget constraint functions ¥ (-, -) and
¥ (., ), set of linear variables L, set of variables
with strictly concave transformations C, unit cost
vector n, lower bounds vector Z , upper bounds
vector Z , and the total budget 1. (As we have
noted earlier, all matrix variables and functions
are transformed to vectors by joining their rows.)

1:K={K, K K,
2: while K-K, do
3:P—{F, (Z,)] i¢{K K, LieCu{F, (Z,)|
iKUK, L i€ ctu{F, (2)|i¢ {K,uK,, }i€ L}

Kunb}<—{®,®,®,®},/1*=0,/T<—00,A<—0

unb

4:  A«—median(K)

5 ]<—{i|/1*:%,i€L}

6: if ¥ (LK)>0 then

7: A—A

8 K, —K,ulil F(2,) 24 i¢{K K,,}}

9 KK, ufil F(ZLi) =M i¢{K,K,,}i€C}

10: else if ¥ (A,K)<0 then

11: A<—A

12: K,<K,ufi| F(Z,) <A i¢{K,K,, i
<—Kunbu{i | F(

13 K, Z,)<hi¢{K K, }i€C}
14:  if =0 |

15: K, —K,0li| F(Z, ) <A i€ (K, K, }]

16:  else

17: if ¥ (ALK)<0 then

18: K, —K,o{i| F(Z,) =1, 1¢ {K,K,, }}
19: else if ¥ (A, K)<0 then

20: K, —K,ulil ((Z,) > i¢{K oK, }}
21: At

22: Go to line 36

23: else

24: K, —K,ufi| F(Z, ) =2 i€ {K,K,, }}
25: K, —K il F(z,) >\ i¢ {K K }}
26: At

27: Go to line 36

28: end if
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29: end if

30: else

31: K, —K,ufil F(Z,) =M i¢ K K, }}
32: A=A

33: Go to line 36

34:  endif

35: end while

36: Z*«—Z, Vi€EK,

37: 2«7, VieK,

38: [«—I- Zie{K” UK,}'IL-XZi*

39: 0«—C\{K, uK , }

40: if A"=0 and I >0 then

41: Obtain a reduced problem with variable set

Q and budget I, search for an optimal A* in range

[4 (K), A(K)] that satisfies [-) ., 14, (A", K)=0

42: end if

43: Z*—¢ (1K)

44: T—I1-ynZ*
€0

45: Je—ti| A= %,iEL}

1

VieQ

46: if J*@ and I >0 then

47:  Generate a balanced optimal solution with:
I- Zie]’]i ZL,-

e s (ZU,._ ZLi)

49:  Z'e— 6§ Z+(1-6)Z, viE]

50: end if l l

51: Report Z* as the optimal solution.

48: 5

In the above algorithm, set Jtracks the presence
of alternative optima. We show that for non-
trivial problems, the algorithm always converges
to the optimal solution in a finite number of
iterations. We denote the set of feasible solutions
at iteration (p) as S, and the initial and terminal
set of solutions as S and S_ respectively (in case
the algorithm ever stops). In §4.1, we first show
in Theorem 1 that any member of the non-trivial
optimal solution (Z € Z*) is a member of the set
of feasible solutions at any arbitrary iteration p,
i.e. Z'c S v p €{0,1,... }. Then, we show that
all members of the terminal set are within this
optimal set, in other words S_c Z* (Theorem 2).
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This two-way relationship affirms that S_e Z*.

We then prove each iteration of the algorithm
strictly reduces the feasible set of solutions
(i.e., Spﬂc Sp v p€{0,1,... }) in Theorem 3 using
arguments from §4.2. Subsequently, we can
trivially explain why the algorithm terminates in
finite number of iterations. We close this section
presenting performance characteristics of
CaLCKO in §4.3.

We prove that for any non-trivial problem the
optimal is within the set of feasible solutions of
any iteration of the algorithm.

Theorem 1. Suppose we have a non-trivial
problem. Let Z* be the optimal solution of
Equation (11), A* the corresponding Lagrangian
multiplier, and p an arbitrary iteration of algorithm
that is defined as K = K K K K } (K is

lb > ub’ lnb’ unb.
not necessarily a member of (K. ) The foIIowmg

holds:

(1) A*€[A (K, )2 (K, )],
(2) A* and Z* will satisfy the investment bounds
A K )<Zr< (AK,) Vie{1,2,..n}, (24)

(8) 2* will not give a slack at the upper investment
function (\I/()L*K )<0) and will not overspend at
the lower mvestment function (¥ (1*K )>0)

Since these conditions match the membership
conditions of SP, we conclude

Z'c8, vV pe{01,2,.}. (25)
Proof. The proof is provided in Appendix D.

At the terminal iteration reverse condition is also
true:

Theorem 2. Any member of the terminal set of
the algorithm (S_) is an optimal solution, i.e.

S cZ. (26)
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Proof. The proof is provided in Appendix E.

With above two theorems we conclude for any
non-trivial problem S§_c Z*. Now, let's examine if
CaLCKO algorithm terminates in finite steps.

Our subsequent theorem ensures that at each
iteration the algorithm strictly reduces the
feasible set

S S
p

- v p€f{0,12,..}. (27)

Theorem 3. Let K = {bi XK., Klnb K., } and

A e[/l (K )/1 (K )] be glven from any arbltrary
iteration’ p of CaLCKO.

At least one variable will have narrowed bounds
as a result of any arbitrary iteration p of CaLCKO
by becoming a member of K (or K already
describes an optimal solution generated by the
algorithm). Therefore, the set S, strictly reduces
in each iteration; i.e., Spﬂc SP.

Proof. The proof is available in Appendix F.

Because the set M is compact by definition of
[P"], Z* < S, (Theorem 1), S c Z* (Theorem 2),
and Spﬂc SP v p€{0,1,... } (Theorem 3), CaLCKO
is a strict contraction mapping [19] and hence
should converge to the set of optimal solutions

in a finite number of iterations.

An equivalent restatement of Theorem 3 is
that CaLCKO puts at least one variable of M
into Kp at each iteration. Thus, CaLCKO finds
the complete set of information describing the
optimal solution at a finite number of iterations
(or terminates before that by reporting an optimal
solution). After finding K, any nontrivial reduced
problem is an unbounded problem which can
be solved in finite iterations using Newton's
method. Therefore, CaLCKO always terminates
in a finite number of iterations with an optimal
solution. In the next subsection, we discuss the
asymptotic time complexity of CaLCKO.
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Within the loop described between Line 2 and
Line 35 of the Algorithm 1 description, the
approximate median of a vector can be found
in O(n). Similarly, other calculations in this loop
can be done in O(n). Therefore, the internal
operations of the algorithm can be done in linear
time. Because we select A at each iteration as the
pseudo-median, about half of the bounds are set
as effective or ineffective at each iteration. This
requires O(n log,(n)) iterations to exit the loop.
This effectively defines the number of iterations
for the loop. The subsequent operations
following the loop require less than O(n log,(n))
operations to set the reported optimal solution
and to reach a prespecified precision in the
Newton's algorithm for any remaining nontrivial
reduced problem. Together, this exhibits the
performance characteristics of O(n log,(n)) for
CaLCKO.

Next, we perform a benchmarking analysis
to demonstrate the typical performance of
CalL.CKO compared with two viable alternatives:

+  NLOpt: the derivative-based local
optimisation engine MMA (Method of Moving
Asymptotes) [20], best for convex separable
problems, implemented on the NLOpt
optimisation suite developed at MIT [21],

+ Commercial: a specialised commercial
optimisation suite written in C++ and
wrapped in a dynamic-link library (DLL).
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Forthis analysis, we call all three engines (NLOpt,
Commercial, and CaLCKO) from within an R [22]
environment. We generate 30 random problem
instances each for CaLCKO, commercial solver,
and NLOpt at each of the problem sizes (i.e., n)
of 1K, 5K, 10K, 20K, 30K, 40K, and 50K.

All investment opportunities in each instance
lead up to a unit return expressed in the
expO(wenSaI functional form described in Table 1:

Z

-exp | =~ | with a cost of $1 per unit.

3
For each investment opportunity, we generate

the functional form parameter of an investment
opportunity, & , independently at random with
a uniform distribution between 100 and 5,000.
Each random instance has a budget of 1,000
times the number of investment opportunities.
All investment opportunities are allowed to be
invested freely; i.e., the upper and lower bounds
for each investment opportunity is the total
budget and zero, respectively.

We depict the average convergence time of
the three engines in Figure 1. Error bars mark
two standard deviations above and below the
mean. The solution at every instance and engine
obeys the necessary and sufficient optimality
conditions at half machine precision.

As expected, the specialised commercial
optimisation routine outperforms the open
source engine for small (and most typical)
problem sizes, but the open source engine has
better large-problem performance. CalLCKO
markedly outperforms both engines up to
an order of magnitude. This performance
advantage is more pronounced as the problem
size gets larger. This observation also makes
sense from a theoretical standpoint as the
O(n log,(n)) theoretical worst-case performance
is better than the average time performance
stated for general purpose linear optimisation
[23], which theoretically is easier than general
purpose convex optimisation.

Figure 1. Average time performance of CaLCKO in
comparison with the open source optimisation suite
NLOpt and a specialised commercial optimisation
engine with increasing problem size. Note the log-
scale of the time axis.
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Conclusion

In this paper, we thoroughly show that the marketing mix optimisation problem can be transformed
to an equivalent form suitable for fast optimisation that will allow rapid sensitivity analysis. We
introduce a step-size-free, reproducible and easy-to-configure algorithm (CaLCKO) that bridges
the gap between the current state of the academic literature and current practice, and show that
CaLCKO can efficiently solve the marketing mix optimisation problem for a mixture of concave and
linear marketing inputs, lead/lag and carryover effects.

In continuation of this research, we will provide new algorithms that will deliver efficient optimisation
routines for marketing mix models with Sigmoidal (S-shaped) transformation functions. Unlike the
marketing mix optimisation problems, we study here though, the Sigmoidal problem is NP-Hard.
Therefore, we will either resort to algorithms that have worst-case exponential complexity, some
polynomial-time approximation schemes (PTAS), or some heuristics.
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