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Abstract
*SHZZ� PTIHSHUJL� WYVISLTZ�� ^OLYL� [OL� KH[H� VM� VUL� JSHZZ�
(majority) greatly outnumbers another class (minority), can 
cause bias and prejudice, which is either unethical or costly 
VY�IV[O��;OL`�VJJ\Y�HZ�THYRL[LLYZ�HYL�W\YZ\PUN�HUK�[HYNL[PUN�
ever smaller market segments using automation with new 
HK]HUJLZ�PU�HY[PÄJPHS�PU[LSSPNLUJL��(0��HUK�THJOPUL�SLHYUPUN��
/PNO�WYVÄSL�L_HTWSLZ�PUJS\KL�NLUKLY�HUK�YHJPHS�IPHZ�PU�MHJPHS�
recognition software, as well as less public and transparent 
cases of bias in assessments of credit worthiness, for 
example. As traditional approaches have had limited success, 
^L�WYLZLU[� [OL� HWWSPJH[PVU�VM� H� UV]LS� ÄS[LY� HWWYVHJO� MYVT�
computer science to the class imbalance problem in the 
THYRL[PUN� JVU[L_[�� ;OL� HWWYVHJO� ISLUKZ� YLWLH[LK� \UKLY�
sampling with majority voting ensemble type learning to create 
H� TL[H�JSHZZPÄLY�� )LJH\ZL� VM� JVUÄKLU[PHSP[`� JVTTP[TLU[Z�
on one hand and reproducibility requirements on the other 
hand we resort to demonstrating this approach on publicly 
H]HPSHISL�THYRL[PUN�KH[H�ZL[Z��9LZ\S[Z�KLTVUZ[YH[L�[OH[�[OPZ�
HWWYVHJO��H��ZPNUPÄJHU[S`�PTWYV]LZ�[OL�WYLKPJ[PVU�HJJ\YHJ`�
of the under-represented class while (b) also reducing the 
gap in prediction accuracy between the two classes, which 
increases marketing opportunities without the cost of bias 
and prejudice.

���0U[YVK\J[PVU�

*SHZZPÄJH[PVUZ��
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A key trend in digital marketing is the pursuit of ever smaller 
THYRL[�ZLNTLU[Z!�-YVT�¸SVUN�[HPS¹�VWWVY[\UP[PLZ�VY�¸UPJOLZ�[OH[�
JHU� HKK� \W¹� �(UKLYZVU� ������ [V� TPJYV�ZLNTLU[Z� �4J2PUZL`�
2016) and mobile micro-moments (Google 2015). Marketeers 
have long envisioned mass customisation (Gilmore & Pine 1997), 
one-to-one personalisation (Peppers et al. 1999) or segment-
VM�VUL�THYRL[PUN��,KLSTHU�� � ���<S[PTH[LS �̀�P[�PZ�HIV\[�M\SÄSSPUN�
Peter Drucker’s decade old vision of a customer-centric business 
^OLYL�THYRL[PUN�SLHYUZ�[V�¸RUV^�HUK�\UKLYZ[HUK�[OL�J\Z[VTLY�
ZV�̂ LSS�[OH[�[OL�WYVK\J[�VY�ZLY]PJL�Ä[Z�OPT�HUK�ZLSSZ�P[ZLSM¹��+Y\JRLY�
1973). Key enablers of this trend are (a) advances in technology 
HUK� �I�� ZLUZVY� KH[H� �*YVZI`� 
� :JOS\L[LY� 3HUNKVU� ������� ;OL�
SH[LZ[�[LJOUVSVN`�LUHISLY�PZ�HY[PÄJPHS�PU[LSSPNLUJL��(0��̂ P[O�THJOPUL�
and deep learning methods.



28 www.i-com.org Back to Table of Contents

However, a problem has surfaced with the AI-
enabled automation of market segmentation, 
targeting and tailoring of messages. It is inherent 
in seeking smaller targets: heavily imbalanced 
data sets. A data set is imbalanced when, for 
H� [^V�JSHZZ� JSHZZPÄJH[PVU� WYVISLT�� [OL� KH[H�
for one class (majority) greatly outnumbers the 
other class (minority). Although most of the 
studies on class imbalance only look at a two-
class problem, imbalance between classes 
does exist in multi-class problems too (Sun 
et al. 2006, Liu & Zhou 2006). Most predictive 
machine learning or data mining algorithms 
assume balanced data sets and their ability to 
predict the minority class deteriorates in the 
WYLZLUJL�VM�JSHZZ�PTIHSHUJL��;OPZ�PZ�LZWLJPHSS`�
troubling when the minority class is the class of 
interest and when misclassifying examples of 
the minority class causes bias, an unreasoned 
judgement or prejudice, which is either unethical 
or costly or both.

With the surge in popularity of AI in marketing, 
the problem of imbalanced learning and bias has 
KYH^U�H�ZPNUPÄJHU[�HTV\U[�VM�PU[LYLZ[�MYVT�[OL�
public. Examples include the debate of gender 
and racial bias in AI solutions (Leavy 2018). 
:WLJPÄJHSS �̀� YLZLHYJOLYZ� H[�40;� OH]L� KL[LJ[LK�
both skin-type and gender biases in commercially 
YLSLHZLK� MHJPHS�HUHS`[PJZ� WYVNYHTZ� �40;� �������
Other much less publicised, nonetheless 
[YV\ISLZVTL�L_HTWSLZ�PUJS\KL�L]LU[Z�HɈLJ[PUN�
ordinary consumers every day, such as rejected 
or fraudulent credit card transactions.

For example, in detecting fraudulent credit card 
transactions, the fraudulent transactions may 
be less than 1% of the total transactions. In the 
presence of such severe imbalance most data 
mining algorithms would predict all instances 
as belonging to the majority class and be more 
[OHU�  ��HJJ\YH[L��*OH^SH�L[�HS��������>VVKZ�
et al. 1993).

Many approaches have been studied to tackle 
the imbalance problem but with limited success. 
Most of them focus either on manipulating the 
composition of the data by using sampling or 
modifying the metrics used by the data mining 
HSNVYP[OTZ�� ;OPZ� WHWLY� PU[YVK\JLZ� H� [LJOUPX\L�

[V� [OL� THYRL[PUN� ÄLSK� [OH[� KLTVUZ[YH[LZ� OV^�
the performance of a standard data mining 
algorithm can be improved by blending the 
use of under-sampling with ensemble learning. 
It has been tested earlier albeit outside the 
THYRL[PUN�KVTHPU��:PRVYH�
�9HPUH��������+\L�[V�
JVUÄKLU[PHSP[`� JVTTP[TLU[Z� VU� VUL� OHUK� HUK�
for transparency on the other hand, we resort to 
demonstrating the approach on public marketing 
KH[H�ZL[Z�JVSSLJ[LK�MYVT�[OL�<*0�YLWVZP[VY`�[OH[�
L_OPIP[� HU� PTIHSHUJL� YH[PV� VM� ULHYS`�  ��� �<*0�
2016). Finally, we benchmark the performance 
of this approach with results from traditional 
techniques.

2. Best Practice Overview

3. Approach

Various techniques have been proposed to 
solve the problems associated with class 
PTIHSHUJL� �.HYJPH� L[� HS�� ������� ;YHKP[PVUHSS �̀�
research on this topic has focused on solutions 
IV[O�H[�[OL�KH[H�HUK�HSNVYP[OT�SL]LSZ��;OLZL�JHU�
IL� IYVHKS`� JSHZZPÄLK� PU[V� [OYLL� JH[LNVYPLZ!� �H��
9LZHTWSPUN�TL[OVKZ�MVY�IHSHUJPUN�[OL�KH[HZL[��
�I��TVKPÄJH[PVU�VM�L_PZ[PUN� SLHYUPUN�HSNVYP[OTZ��
HUK� �J�� TLHZ\YPUN� JSHZZPÄLY� WLYMVYTHUJL� ^P[O�
KPɈLYLU[�TL[YPJZ��

9LZHTWSPUN� [LJOUPX\LZ� JHU� HNHPU� IL� IYVHKS`�
JSHZZPÄLK�PU[V�V]LY�ZHTWSPUN�HUK�\UKLY�ZHTWSPUN�
methods. In over-sampling, the representation 
VM�TPUVYP[`�L_HTWSLZ�PZ�HY[PÄJPHSS`�IVVZ[LK��0U�[OL�
simplest case, the minority class examples are 
duplicated to balance their numbers with those 
of the majority class (Batista et al. 2004, Ling & 
Li 1998, Drummond & Holte 2003). In another 
widely used technique, Synthetic Minority Over-
ZHTWSPUN� ;LJOUPX\L� �:46;,�� �*OH^SH� L[� HS��
2002, Han 2005), new minority instances are 
synthetically created by interpolating between 
several minority instances that lie close 
together. In under-sampling (Drummond & Holte 
2003), only a small subset of the majority class 
instances is sampled so as to create a balanced 
sample with the minority class.

Figure 1 illustrates how our approach combines 
majority voting ensemble learning with under-

Marketing to “Minorities”: Mitigating Class  
Imbalance Problems with Majority Voting Ensemble Learning
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sampling. Both methods have been used 
^PKLS`� ILMVYL!� 9L�ZHTWSPUN� �V]LY� HUK� \UKLY�
sampling) has been utilised to create balanced 
data sets to address the problem of imbalance. 
Ensemble learning has been applied to improve 
the performance of underlying machine learning 
[LJOUPX\LZ�� ;OL� VYPNPUHSP[`� VM� V\Y� TL[OVK�
involves combining both of these techniques in 
a unique way. It employs re-sampling to create 
multiple balanced sets and ensemble learning 
VU�[OLZL�ZL[Z�[V�NLULYH[L�H�TL[H�JSHZZPÄLY�

;OL�THQVYP[`�JSHZZ�PUZ[HUJLZ�HYL�YHUKVTS`�ZWSP[�
into disjoint sub-samples that are similar in size to 
the minority class instances. Each majority class 
sub-sample is then combined with the minority 
class instances to create multiple balanced sub-
ZL[Z�� ;OL� U\TILY� VM� IHSHUJLK� Z\I�ZL[Z� [O\Z�
created depends on the ratio of imbalance in the 
original data set. For example, if the imbalance 
ratio is 75% then three balanced sub-sets will be 
created, each containing about one-third of the 
majority class instances and all of the minority 
class instances. Each sample is then used by 
[OL�KH[H�TPUPUN�HSNVYP[OT�[V�JYLH[L�H�JSHZZPÄLY��
;OL�PUKP]PK\HS�JSHZZPÄLYZ�HYL�[OLU�JVTIPULK�PU[V�
H�TL[H�JSHZZPÄLY�I`�\ZPUN�THQVYP[`�]V[PUN�^OLU�
WYLKPJ[PUN�PUZ[HUJLZ�MYVT�[OL�[LZ[�ZL[��;OL�[LZ[�
set is created before the balanced sub-sets are 
JYLH[LK� I`� \ZPUN� Z[YH[PÄLK� ZHTWSPUN� ZV� HZ� [V�
make sure that it represents the original class 
imbalance. 

;V� PSS\Z[YH[L� [OPZ� TL[OVK�� ^L� MVJ\Z� VU� [OYLL�
THYRL[PUN� KH[H� ZL[Z� MYVT� [OL� <*0� 3LHYUPUN�
9LWVZP[VY`� �<*0� ������ [OH[� OHK� HU� PTIHSHUJL�
ratio of at least 80%. Table 1 gives the details 
about the data sets used. For data sets with 
more than one class we converted the problem 
into a binary class by combining the minority 
classes into one class.

We ran our experiments as 10-fold cross-
]HSPKH[PVU�I`�JYLH[PUN���� Z[YH[PÄLK� MVSKZ�VM� [OL�
original data set. In each run we used one-fold 
as the testing set and for our method used 
the remaining 9 folds to create the balanced 
training sub-sets using under-sampling as 
described above. Similarly, in each run we also 
HWWSPLK� :46;,� HUK� V]LY�ZHTWSPUN� VUS`� VU�

the training set consisting of the 9 folds. In all 
experiments we used the decision tree learning 
algorithm J48 from the Weka Machine Learning 
software. We compared our approach with 
using the J48 algorithm on (a) the original data 
set, on (b) balanced training sets created using 
:46;,��HUK�VU��J��V]LY�ZHTWSPUN��0U�Z\TTHY �̀�
we compare our technique with two machine 
learning balancing methods with posterior 
adjustment. Note that both the balancing 
methods with which we compare our method 
PU]VS]LZ�WVZ[LYPVY�HKQ\Z[TLU[�ZPUJL�[OL�[LZ[PUN�
]HSPKH[PVU� ZL[� OHZ�ILLU� HKQ\Z[LK� [V� YLÅLJ[� [OL�
original data imbalance.

-PN\YL����>VYRÅV^

Table 1. Marketing data sets for demonstration

Data Set 
�VM�([[YPI\[LZ # of Instances Majority [%]

Bank Marketing 21 41,188 89
Student Alcohol 33 395 88

9LK�>PUL�
Quality

12 1,599 86

���+PZJ\ZZPVU�VM�9LZ\S[Z
Table 2 presents the results for the total accuracy 
across the four methods. All the results reported 
here are average of 10 runs described earlier. We 
also report the results of a paired t-test comparing 
our approach with the other three traditional 
methods. As can be seen, all three methods 
with imbalance treatment show a drop in total 

Marketing to “Minorities”: Mitigating Class  
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HJJ\YHJ �̀� OPNOSPNO[PUN� [OL� [YHKL�VɈ� PU� [YLH[PUN�
the class imbalance problem. 

;V� IL[[LY� Z[\K`� [OL� [YHKL�VɈ�� ^L� SVVR� H[� [OL�
accuracy of predicting the individual classes. 
Since the minority class is the class of interest, 
we treat it as the positive class and the majority 
class as the negative class. Our goal is to improve 
the prediction accuracy of the minority class. In 
Table 3 we compare the prediction accuracy of 
the majority class or the true negative rate, also 
RUV^U�HZ�¸:WLJPÄJP[ �̀¹�KLÄULK�I`�;5��;5�-7��
��^OLYL�;5�PZ�[OL�[Y\L�ULNH[P]LZ��-5�PZ�[OL�MHSZL�
ULNH[P]LZ�� ;7� PZ� [OL� [Y\L� WVZP[P]LZ�� HUK� -7� PZ�
the false positives. In Table 4 we compare the 
prediction accuracy of the minority class or the 
[Y\L� WVZP[P]L� YH[L�� HSZV� RUV^U� HZ� ¸:LUZP[P]P[ �̀¹�
KLÄULK�I`�;7��;7�-5���6\Y�TL[OVK�ZPNUPÄJHU[S`�
improves the accuracy of predicting the minority 
class compared to all the other methods. For the 
Student Alcohol dataset it more than doubles 
the prediction accuracy of the minority class 
compared to all the other methods.

Data Set Original [%] SMOTE [%] Over  
Sampling [%]

6\Y� 
Approach [%]

;�;LZ[�MVY�:PNUPÄJHUJL

P original P SMOTE P over

Bank Marketing 91 90 86 86 3.44185E-16 6.80346E-14 n.s.
Student Alcohol 86 85 85 72 4.787795E-06 5.01616E-05 9.1052E-06
9LK�>PUL�8\HSP[` 88 85 88 78 3.1158E-05 0.001207545 3.92611E-05

Data Set Original [%] SMOTE [%] Over  
Sampling [%]

6\Y� 
Approach [%]

;�;LZ[�MVY�:PNUPÄJHUJL

P original P SMOTE P over

Bank Marketing 96 93 87 85 2.88311E-23 8.22295E-19 n.s.
Student Alcohol 94 91 91 71 1.64195E-09 2.82726E-08 1.7609E-08
9LK�>PUL�8\HSP[` 94 87 91 77 6.36433E-08 0.000121534 8.08346E-07

Data Set Original [%] SMOTE [%] Over  
Sampling [%]

6\Y� 
Approach [%]

;�;LZ[�MVY�:PNUPÄJHUJL

P original P SMOTE P over

Bank Marketing 54 65 74 94 1.99716E-18 6.03138E-16 1.26144E-16
Student Alcohol 22 36 37 78 8.4853E-07 1.005508E-05 1.22143E-05
9LK�>PUL�8\HSP[` 53 74 63 86 1.64438E-06 0.003636173 5.60162E-06

;HISL����6]LYHSS�HJJ\YHJ`�VM�[OL�MV\Y�TL[OVKZ

;HISL����(JJ\YHJ`�VM�WYLKPJ[PUN�[OL�THQVYP[`�JSHZZ�¶�¸:WLJPÄJP[`¹

;HISL����(JJ\YHJ`�VM�WYLKPJ[PUN�[OL�TPUVYP[`�JSHZZ�¶�¸:LUZP[P]P[`¹

Since most data mining algorithms work best on 
a balanced data set, the ideal performance goal 
of an algorithm should be to have high but similar 
prediction accuracies for both the classes even 
PU�[OL�WYLZLUJL�VM�JSHZZ�PTIHSHUJL��;V�L]HS\H[L�
this relative performance between the two 
classes we combine the results from Table 3 
and 4 and report the gap between the prediction 
accuracies of the two classes in Table 5. Again, 
our method provides the best performance in 
terms of minimising the gap in performance 
between the two classes.

Several mechanisms that underly our method 
SLHK� [V� IL[[LY� YLZ\S[Z�� 9L�ZHTWSPUN� [V� JYLH[L�
balanced data sets reduces the bias of the 
predictions away from the majority class. 
*VTIPUPUN� LZ[PTH[VYZ� [V� JYLH[L� H� TL[H�
JSHZZPÄLY� YLK\JLZ� [OL�]HYPHUJL�HUK�\UJLY[HPU[`�
of estimating a population parameter. Every 
machine learning technique also has an implicit 
SHUN\HNL�IPHZ�ZPUJL�P[�PZ�[Y`PUN�[V�Ä[�[OL�JVUJLW[�
in its representational language. By using 

Marketing to “Minorities”: Mitigating Class  
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ensemble learning the way it is employed in our 
method, it is possible to reduce the implicit bias 
I`�\ZPUN�KPɈLYLU[�THJOPUL� SLHYUPUN� HSNVYP[OTZ�
VU�KPɈLYLU[�IHSHUJLK�Z\I�ZL[Z�

Data Set Original [%] SMOTE [%] Over  
Sampling [%]

6\Y� 
Approach [%]

;�;LZ[�MVY�:PNUPÄJHUJL

P original P SMOTE P over

Bank Marketing 42 27 18 9 7.0803E-17 5.42498E-12 2.21019E-09
Student Alcohol 72 56 54 13 5.49945E-08 3.04377E-07 1.4901E-06
9LK�>PUL�8\HSP[` 41 13 29 10 6.19599E-06 n.s. 0.000375385

;HISL����.HW�IL[^LLU�[OL�WYLKPJ[PVU�HJJ\YHJ`�VM�IV[O�JSHZZLZ

5. Implications for Marketing 
Practitioners
Any experienced marketing practitioner is aware 
of the dilemma determining the veracity of a 
parameter or hypothesis for a small sample – 
particularly in the context of micro-segmentation 
(e.g., Button et al. 2013). On one hand, a sample 
may end up being small to keep it representative 
PU�[OL�ÄYZ[�WSHJL��6U�[OL�V[OLY�OHUK��P[�TH`�IL�[VV�
ZTHSS�[V�LP[OLY�KL[LJ[�ÄUKPUNZ��WV^LY�HUK�HIPSP[`�
to avoid type II error or false negatives, FN – HO 
^YVUNS`� JVUÄYTLK�� VY� WYL]LU[� ÄUKPUNZ� [V� IL�
JVUÄKLU[S`�L_[YHWVSH[LK�VU[V�H�SHYNLY�WVW\SH[PVU��
Massively imbalanced big data present similar 
JOHSSLUNLZ�� ;OL� KV^UZPKL� VM� PNUVYPUN� JSHZZ�
imbalance problems is bias, embarrassment and 
cost. Unfortunately, there are no easy answers. 
If our results have demonstrated anything, it is 
that today’s best practice or generally accepted 
scholarly methods are falling short and can be 
improved on.

6\Y� HWWYVHJO� YLÄULZ� \ZL� VM� H� [YHKP[PVUHS� (0�
method, decision tree learning algorithm J48, 
with additional data treatment:

�࠮ Used under-sampling to create multiple 
disjoint sub-sets of the majority class, which 
are then combined with the minority class 
instances to create balanced sub-sets of 
data.

�࠮ Applied ensemble type of learning where 
a data mining algorithm is applied on 
the individual sub-sets and the resulting 

JSHZZPÄLYZ�HYL�JVTIPULK�PU[V�H�TL[H�JSHZZPÄLY�
by using majority voting for predicting the 
test cases.

Performance has been transparently and 
reproducibly established by (a) using public 
marketing data sets that exhibit an imbalance 
ration of nearly 90% and (b) comparing our 
method with best practice, such as plain 
application of J48 and two other traditional 
imbalance treatments.

In essence, we have introduced a strategy 
of modularisation, combining traditional AI 
algorithms with novel data treatment modules. 
-\Y[OLY�YLÄULTLU[Z�̂ P[O�HKKP[PVUHS�TVK\SLZ�TH`�
yield more improvements. Examples include:

�࠮ 9HUKVT�ZHTWSPUN!��>L�OH]L�JYLH[LK�T\[\HSS`�
L_JS\ZP]L�Z\I�ZL[Z�VM�[OL�THQVYP[`�JSHZZ��;OL�
drawback is that the number of subsets that 
OH]L� [V� IL� JYLH[LK� [OLU� ILJVTLZ� Ä_LK�� 0U�
the future we would like to try a more general 
YHUKVT�ZHTWSPUN�HWWYVHJO�ZV�[OH[�KPɈLYLU[�
sub-sets can have common instances. We 
can then try varying the number of sub-sets 
[V�ÄUK�[OL�VW[PTHS�U\TILY�

�࠮ Multi-method processing: Instead of using 
the same data mining algorithm on all the 
sub-sets of data as we have done in this 
WHWLY��^L�^PSS�L_WLYPTLU[�^P[O�\ZPUN�KPɈLYLU[�
algorithms to see if that can further improve 
the results.

Great marketing minds have encouraged us 
to experiment, stretch conventions, break the 
Y\SLZ�� ¸[OPUR� KPɈLYLU[¹� �:[L]L� 1VIZ� H[� (WWSL���
Overall, results demonstrate the rewards of 
Z\JO�JYLH[P]L�L_WLYPTLU[H[PVU!�;OL�KV^UZPKL�VM�
class imbalance can be mitigated, the upside is 
marketing opportunity.

Marketing to “Minorities”: Mitigating Class  
Imbalance Problems with Majority Voting Ensemble Learning
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Optimising Marketing Mix Models with 
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Abstract
Optimal budget allocation of a marketing mix model (MMM) 
is typically solved either using steepest coordinate ascent 
or metaheuristics, such as genetic algorithms. Both of 
[OLZL� TL[OVKZ� Z\ɈLY� MYVT� ZWLLK�HJJ\YHJ`� [YHKL�VɈ� HUK�
HYL� KPɉJ\S[� [V� ZJHSL� MVY� ZJLUHYPV� HUHS`ZPZ� ^OLYL� THU`�
optimisation problems need to be solved as fast as possible.  
In this paper, we show that output optimisation of MMM can 
be transformed to a continuous knapsack problem, which 
has a suitable form for developing fast, exact, and reliable 
HSNVYP[OTZ�[OH[�HSSL]PH[L�[OPZ�[YHKL�VɈ�

>L�WYVWVZL�H�UL^�HSNVYP[OT��^OPJO�^L�UHTL�HZ�*VUJH]L�
HUK�3PULHY�*VU[PU\V\Z�2UHWZHJR�6W[PTPZLY��*H3*26��ILZ[�
Z\P[LK� [V� [OPZ� [YHUZMVYTLK� VW[PTPZH[PVU� WYVISLT�� *H3*26�
can optimise a versatile form of marketing mix models, 
^OPJO� PZ� ÅL_PISL� LUV\NO� [V� PUJVYWVYH[L� TP_LK� LɈLJ[Z��
SLHK�SHNZ�� JHYY`V]LYZ�� HUK� ZH[\YH[PVU� LɈLJ[Z�� >L� KPZJ\ZZ�
the convergence, optimality, and theoretical performance 
JOHYHJ[LYPZ[PJZ� VM�*H3*26��>OLU� ILUJOTHYRLK� HNHPUZ[� H�
high-performance commercial optimisation library, we claim 
an order of magnitude improvement in time to optimisation 
^P[O�*H3*26�

���0U[YVK\J[PVU�

*SHZZPÄJH[PVUZ��
Key Words: 
�࠮ Marketing mix modeling
�࠮ Budget Optimisation
�࠮ Marketing Budget Allocation
�࠮ Mathematical Optimisation
�࠮ *VU]L_�6W[PTPZH[PVU

How do sales or market share respond to marketing expenditures?  
For over 40 years, market response research has produced 
econometrics and time series analysis based generalisations 
HIV\[� [OL�LɈLJ[Z�VM�THYRL[PUN�TP_�]HYPHISLZ�VU�ZHSLZ� B�D��>P[O�
the ever-increasing availability of data in terms of automated 
MLLKZ��SHYNL�HNLUJPLZ�SPRL�.YV\W4�YV\[PULS`�VɈLY�THYRL[PUN�TP_�
TVKLSZ�IHZLK�VU�[OPZ��KH[H�HZ�H�ZLY]PJL�[V�HK]LY[PZLYZ�B�D��;O\Z��
a substantial number of companies have been using models of 
the marketing mix response as an analytical input in their quest 
to learn from the past, optimise their future media budgets and 
HSSVJH[L� [OLZL� I\KNL[Z� PU[V� [OL�TVZ[� WYVÄ[HISL�THYRL[PUN� HUK�
media channels. Such models are often named as Marketing Mix 
4VKLSZ��VY�444Z�MVY�ZOVY[�B�D�

MMMs incorporate numerous factors on the nature of advertising. 
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;OLZL� PUJS\KL� J\YYLU[� LɈLJ[Z�� JHYY`V]LYZ��
KPZ[YPI\[LK�SHNZ��ZH[\YH[PVU�HUK�JVTWL[P[PVU�B�D��
;OL�YLTHPUPUN�THQVY�KPTLUZPVUZ�VM�HK]LY[PZPUN�
[OH[�HU�HK]LY[PZLY�ULLKZ�[V�JHW[\YL��NLVNYHWO`�
market, creative, campaign messaging, 
product to be advertised, and sales channel) 
involve changes in the responsiveness itself 
VM� HK]LY[PZPUN� L_WVZ\YL��4P_LK� LɈLJ[Z�TVKLSZ�
(or hierarchical linear models, without loss of 
generality) inherently account for the fact that 
TVKLS� JVLɉJPLU[Z� TH`� ]HY`� IL[^LLU� [OLZL�
KPɈLYLU[�KPTLUZPVUZ�B�D¶B�D�PU�HKKP[PVU�[V�HSS�[OL�
V[OLY�LɈLJ[Z��JHYY`V]LYZ��SHNZ��HUK�ZV�VU���4P_LK�
LɈLJ[Z�TVKLSZ�HSZV�HSSV^�WHYHTL[LY�LZ[PTH[PVU�VM�
HK]LY[PZPUN�LɈLJ[Z�PU�KPTLUZPVUHS�JVTIPUH[PVUZ�
with very few observations and even under 
missing data on some dimensional combinations 
B D��0U�B��D�^L�WYV]PKL�H�TH[OLTH[PJHS�V]LY]PL^�
VM�OV^�^L�YLWYLZLU[�[OL�KH[H�MVY�H�TP_LK�LɈLJ[Z�
MMM in a way that incorporates all of the 
KLÄUPUN�I\ZPULZZ�MLH[\YLZ�VM�444Z�HUK�LHZPS`�
HSSV^Z�NLULYH[PUN�SHYNL�ZJHSL�TVKLSZ�B��D�

After developing such a marketing mix model, 
the next natural step is to maximise its aggregate 
WYLKPJ[LK� V\[W\[� [V� VɈLY� [OL� ILZ[� WVZZPISL�
marketing plan to the advertiser. 

;OPZ� VW[PTPZH[PVU1 typically relies on steepest 
JVVYKPUH[L�HZJLU[��^OPJO�Z\ɈLYZ�MYVT�H�NLULYHS�
ZWLLK� ]Z�� HJJ\YHJ`� [YHKLVɈ� WHYHTL[LYPZLK� I`�
Z[LW�ZPaL�HUK� PZ�UV[�LɉJPLU[�LUV\NO� [V�VI[HPU�
a timely solution and a full sensitivity analysis 
around the found solution. Metaheuristics (e.g., 
genetic algorithm, particle swarm optimisation) 
are another popular alternative, though those 
HSZV� Z\ɈLY� MYVT� YLWSPJHIPSP[`� PZZ\LZ�� YLX\PYLZ�
workarounds that could hamper optimality 
in order to suppress undesirable behavior in 
the output (performance is found to decrease 
with increasing budget ceteris paribus), and 
still retains a degree of the speed vs. accuracy 
[YHKLVɈ�� 0[� [\YUZ� V\[� [OH[� [OL� WYVISLT� JHU� IL�
equivalently represented in a form receptive to 
a much faster and step size-free optimisation 
HSNVYP[OT��;OLYLMVYL��̂ L�W\YZ\L�[OYLL�VIQLJ[P]LZ�
in this work: (1) transforming the current MMM 

PU[V� H� MVYT� WLYTPZZP]L� [V� H� TVYL� LɉJPLU[�
optimisation procedure, (2) providing a technical 
description of our proposed algorithm, and (3) 
providing a theoretical, as well as a practical, 
discussion on convergence, optimality, and 
performance of this proposed algorithm.

;V� HJOPL]L� [OLZL� VIQLJ[P]LZ�� ^L� ÄYZ[� WYV]PKL�
mathematical proof that optimising a fairly 
NLULYHSPZHISL� MVYT� VM� H� TP_LK� LɈLJ[Z� 444�
can be transformed to a continuous knapsack 
WYVISLT� PU� ���� ;OLU� PU� ���� ^L� KPZJ\ZZ� [OL�
merits of the two most popular approaches 
to attack this problem: gradient ascent and 
metaheuristics. Next, in §4, we describe our 
WYVWVZLK� *VUJH]L� HUK� 3PULHY� *VU[PU\V\Z�
2UHWZHJR�6W[PTPZLY� �*H3*26�� HSNVYP[OT�� M\SS`�
suited to the equivalent representation of the 
TP_LK� LɈLJ[Z� 444� VW[PTPZH[PVU� WYVISLT� HZ�
a continuous knapsack maximisation problem 
^P[O� SPULHY� HUK� JVUJH]L� WYVÄ[� M\UJ[PVUZ� HUK�
box constraints. We discuss the theoretical 
and practical performance of this algorithm 
compared to a high-performance commercial 
optimisation library. We subsequently discuss 
the challenges in optimising the marketing 
mix model when some inputs have S-shaped 
transformations. We conclude in §5.

2.Transforming the Problem

6\Y�ÄYZ[� Z[LW� PU�WYVWVZPUN�H�UL^�VW[PTPZH[PVU�
HSNVYP[OT� MVY� [OL�THYRL[PUN�TP_�TVKLS� PU� B��D��
is to transform the problem to a form suitable 
for optimisation. Here, we prove that the general 
form of MMM, insofar as typically applied in 
marketing industry, can be transformed to a 
separable budget allocation problem with a 
single budget constraint and a group of box 
constraints. In the optimisation community, this 
problem is referred to as a nonlinear continuous 
RUHWZHJR�^P[O�Z[YPJ[S`�JVUJH]L�HUK�SPULHY�WYVÄ[�
M\UJ[PVUZ�HUK�IV_�JVUZ[YHPU[Z�B��D��>L�Z[HY[�[OPZ�
section by borrowing the current optimisation 
problem from the MMM structure thoroughly 
KLZJYPILK�PU�B��D��;OLU��̂ L�WYVWVZL�HU�LX\P]HSLU[�

Optimising Marketing Mix Models with Concave and 
3PULHY�*VU[PU\V\Z�2UHWZHJR�6W[PTPZLY��*H3*26�

1 In this paper, we freely use the term optimisation to refer to the problem of mathematical optimisation of budget 
allocation using marketing mix models. In particular, estimating marketing mix model parameters is not within the 
scope of this research.
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bound matrix of the same dimension, ! is the 
total budget, and " is an #×% matrix of cost per 
unit of investment in each variable. Index & =1
corresponds to intercepts. Matrix ' includes 
optimisation variables and the objective is to 
maximise the sum of the elements of vector (.

In this representation of the optimisation problem 
B�)�D��LHJO�LSLTLU[�VM�[OL�]LJ[VY�( depends on all 
elements of matrix ', and the objective function 

;OL�HIV]L�L_WYLZZPVU�PZ�PKLU[PJHS�[V�,X\H[PVU�
�� �� PU� B��D��L_JLW[� [OH[�^L�OH]L�\ZLK� PUKL_�& instead of * for expositional clarity. In this 
expression, '+  is an #×%  matrix of investment 
lower bounds, ' , is the investment upper 

In this equation, ( represents an estimation of #×1 vector of dependent variables (e.g. sales 
volume) in all time periods and combinations of 
geographies, products, outlets, campaigns, and 
JYLH[P]LZ�� ;OPZ� #×(%+1) matrix of independent 
variables (e.g. marketing inputs) is represented 
by '. Mixed linear regression parameters are 
presented as - and .�� ;OL� TH[YP_� WHYHTL[LY�/ is of 4×(%+1) dimension and provides model 
parameters for carryover (1 - decay), lead or 
lag, and functional form of the transformations, 
PM� HU �̀�;OL�]HYPHISLZ�HUK�WHYHTL[LYZ�^P[O� [PSKL�
mark (~) represent the variables and parameters 
JVYYLZWVUKPUN�[V�[OL�YHUKVT�LɈLJ[�JVTIPUH[PVU�
(if any) each observation belongs to. Function  0 : 1 #×(%+1) → 1 #×(%+1)��KLÄULK�PU�,X\H[PVU�����PU�B��D��
denotes an element-wise function that operates 
on ' and /.
and 0 (.)�PZ�KLÄULK�HZ�[OL�MVSSV^PUN��LX�����PU�B��D�!

new format and we prove the equivalence of this 
new format (proofs are deferred to the online 
supplemental appendices2). We conclude this 
section with a brief discussion of the value of this 
equivalence result to our task of optimisation.
;V�VW[PTPZL�[OL�444��̂ L�ÄYZ[�ULLK�HU�VIQLJ[P]L�
function: an expression for the aggregate 
WYLKPJ[LK�V\[W\[��;O\Z��^L�IYPUN�,X\H[PVU�����VM�
B��D�HZ�,X\H[PVU�����PU�[OPZ�WHWLY!

Optimising Marketing Mix Models with Concave and 
3PULHY�*VU[PU\V\Z�2UHWZHJR�6W[PTPZLY��*H3*26�

(2)

(3)

(4)
(5)

(=0 (', / )- + 0 (', / ). (1)~ ~ ~

~

/H]PUN� KLÄULK� (, we next bring the following 
KLÄUP[PVU�VM�[OL�VW[PTPZH[PVU�WYVISLT�B�)�D�MYVT�
,X\H[PVU��� ��PU�B��D!

˄

˄where function 0 (:)��PZ�KLÄULK�PU�B��D�HZ�H�ZJHSHY�
function with parameters /3,& and /4,& that operates 
on elements of '. We allow this function to 
assume alternative functional forms listed in 
Table 1, where each of the alternatives applies 
KPɈLYLU[�WH[[LYUZ�VM�KPTPUPZOPUN� YL[\YUZ�HUK�VY�
saturation of marketing instruments.

(6)

˄

2 Available at: O[[WZ!��Z\WWSLTLU[HY`�TH[LYPHSZ�Z��\Z�LHZ[���HTHaVUH^Z�JVT�6W[PTPaPUNF4HYRL[PUNF4P_F4VKLSZ�WKM

>L�IVYYV^� [OL�KLÄUP[PVU�VM�6� MYVT� B��D�HZ� [OL�
number of multidimensional combinations 
(i.e., combinations of geographies, products, 
outlets, campaigns, and creatives). Implicit 
PU� [OPZ� KLÄUP[PVU�� ^P[OV\[� SVZZ� VM� NLULYHSP[ �̀�
is the assumption of a perfectly balanced 
model where the number of observations in 
the data, #, is always a multiple of the number 
of multidimensional combinations, 6. We can 
further express 78  and 98  as a function of 6 and #��LX\H[PVUZ���HUK� �PU�B��D�!

˄
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where : 8& and ;&� YLÅLJ[� H� YLVYKLYLK� MYVT� VM�
Equations (9) and (10) that accounts for mixed 
LɈLJ[Z!

looks as if it cannot be broken down to additive 
components corresponding to each individual 
marketing input.

We claim that this sum can indeed be rearranged 
so that each term is a function of each element 
of '�� ;V� PSS\Z[YH[L� V\Y� WVPU[� Z\JJPUJ[S �̀�^L� ÄYZ[�
Z[H[L�H�ZPTWSPÄLK� MVYT�VM� B�)� D�^P[OV\[� YHUKVT�
LɈLJ[Z� �P�L�� VUL� ^P[O� UV� �~) variable). We then 
show that a similar way of rearrangement can 
be used to generalise the results to all marketing 
mix models.

Proposition 1.� 6W[PTPZH[PVU� WYVISLT� B� )� D� MVY�
TVKLSZ� ^P[OV\[� YHUKVT� LɈLJ[Z� OHZ� [OL� ZHTL�
optimal solution as the following problem

(7)
(13)
(14)

(8)

(9)
(10)

(11)

where all elements of <�HYL�JVUZ[HU[Z�KLÄULK�HZ�
the following:

HUK�^L�KLÄUL�[OL�[PTL�SV^LY�HUK�\WWLY�IV\UKZ�: 8,& and ;& of the geometric series sum in Equation 
(8) as follows:

Proof.�;OL�WYVVM�JHU�IL�MV\UK�PU�Appendix A.

In a similar fashion, we can generalise the above 
result by incorporating variables with random 
LɈLJ[Z�PU[V�[OL�TVKLS�

Proposition 2��;OL�NLULYHS�444�VW[PTPZH[PVU�
problem   has the same optimal solution as the 
following problem.

in which < is again a matrix of constants that we 
YLKLÄULK�HZ

(12)

Proof. ;OL�WYVVM�PZ�H]HPSHISL�PU�Appendix B.  

We invite the reader to observe the contrasts 
between Equation (12) and Equation (8):

1. >L�OH]L�HKKLK�H�T\S[PWSPLY�MVY�YHUKVT�LɈLJ[Z�
( . ) corresponding to each multidimensional 
combination and marketing input {78&d�� ;OPZ�
multiplier generalises to models with random 
LɈLJ[Z�VU�ZVTL�]HYPHISLZ��I\[�UV[�VU�V[OLYZ���
because the elements of . that are associated 
^P[O�]HYPHISLZ�^P[OV\[�YHUKVT�LɈLJ[Z�JHU�IL�
set to zero. 

2. We have introduced the upper and lower 
bounds on indices 8,& to (i) properly 
HJJV\U[� MVY� JHYY`V]LY� HUK� SLHK�SHN� LɈLJ[Z�
related to each '8& and (ii�� [V� VTP[� [YHPSPUN�
SLHKPUN� VIZLY]H[PVUZ� MVY� HU`� TP_LK� LɈLJ[�
combination.

;OL�[YHUZMVYTLK�WYVISLTZ�B) ′D�HUK�B) ″D�UV[�VUS`�
share the exact structure and hence the form 
VM� ZVS\[PVUZ� VM� B) D�� [OL`� HSZV� HYL� PUZ[HUJLZ� VM�
continuous knapsack maximisation problems 
B��D�^P[O�IV_�JVUZ[YHPU[Z��Table 1 presents the 
type of knapsack problem based on the form of 
function 0 (:).˄

Optimising Marketing Mix Models with Concave and 
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Name 0 (:) Problem Type

Linear ' Linear Knapsack

Logarithmic ?# (6AB(', 1)) *VU[PU\V\Z�2UHWZHJR�
with Setups

Power ' /  , 0</3<1 *VUJH]L�2UHWZHJR

Exponential *VUJH]L�2UHWZHJR

S-shaped Sigmoidal Knapsack

˄
3

;HISL����,SLTLU[�^PZL�M\UJ[PVUHS�MVYTZ�[V�IL�
maximised and the corresponding problem

;OPZ�[H_VUVT`�LUHISLZ�\Z�[V�IYPKNL�HSNVYP[OTPJ�
developments in optimisation theory with our 
optimisation problem. Before that, we look into 
^OLYL� V\Y� J\YYLU[� WYHJ[PJL� SPLZ"� ^L� ÄUK� NYLH[�
potential for improvement in terms of solution 
JVUZPZ[LUJ`�HUK�LɉJPLUJ �̀

In this section, we discuss the merits of the 
two most popular approaches to attack this 
problem: gradient ascent and metaheuristics. 
Optimal budget allocation out of a marketing 
mix model (MMM) response is typically solved 
using steepest coordinate ascent: allocating the 
budget in incremental steps to the instrument 
VM� NYLH[LZ[� THYNPUHS� ILULÄ[�� 4L[HOL\YPZ[PJZ�
such as genetic algorithms are also popular. 
<UMVY[\UH[LS �̀� IV[O� HWWYVHJOLZ� Z\ɈLY� MYVT� H�
I\PS[�PU�HJJ\YHJ`�ZWLLK�[YHKLVɈ��HUK�PU�[OL�JHZL�
of metaheuristics, lack quality and replicability.

���*\YYLU[�7YHJ[PJLZ

3.1. Steepest Coordinate Ascent

;OL�THPU�PKLH�VM�[OPZ�HSNVYP[OT�PZ�[V�JHSJ\SH[L�[OL�
approximate partial derivative of the objective 
function with respect to each parameter and 
make a small move in the direction of the largest 
WHY[PHS� KLYP]H[P]L�� ;OLYLMVYL�� [OPZ� HSNVYP[OT�
involves calculating all approximate partial 
derivatives of the objective function at each 
step. 

Any neat implementation of the algorithm is 
easy to build, can quickly clear software quality 

assurance, and has a strong intuitive appeal. 
However, it has a very poor time performance due 
to (i) excessive function evaluations, and (ii) the 
need for increased number of steps for increased 
WYLJPZPVU��;OL�KPZTHS�[PTL�WLYMVYTHUJL�THRLZ�
sensitivity analysis prohibitive (and subject to 
arbitrary precision hindrance as a function of the 
step size) for this algorithm.

�����4L[HOL\YPZ[PJZ

;OL� HWWSPLK� ÄLSKZ� VM� ZJPLUJL�� WHY[PJ\SHYS`�
engineering design, generate numerous complex 
optimisation problems that require a suitable 
solution. However, the focus on solving these 
WYVISLTZ� PZ� \Z\HSS`� KL]LSVWPUN� H� ¸ZH[PZÄJPUN¹�
ZVS\[PVU� YH[OLY� [OHU�ÄUKPUN� [OL�NSVIHS�VW[PTHS��
;V� YLHJO� H� ZH[PZMHJ[VY`� ZVS\[PVU�� ]HYPV\Z�
¸OL\YPZ[PJ¹�HSNVYP[OTZ�OH]L�ILLU�KL]LSVWLK�HUK�
used in practice. In optimisation community, 
these are referred to as metaheuristics. Among 
the numerous heuristic algorithms such as (1) 
genetic algorithm, (2) simulated annealing, (3) 
ant colony optimisation, (4) particle swarm, (5) 
tabu search, and other related algorithms, we 
^PSS�WYV]PKL�H�IYPLM�PU[YVK\J[PVU�[V�[OL�ÄYZ[�[^V�

;OL�THPU�PKLH�VM�NLUL[PJ�HSNVYP[OT�PZ�[V�NLULYH[L�
a population of good starting solutions, called 
a population, and creating a better generation 
from this population at each step by genetics 
operators. Since each member of the population 
is made of multiple elements (chromosomes 
or variables in high-dimensional data), genetic 
operators are used to improve population 
VU� H]LYHNL�� :LSLJ[PVU� �IHZLK� VU� [OL� Ä[ULZZ�
objective function value of each member), 
crossover (selecting a portion of chromosomes 
from two parents and building new children), and 
mutation (randomly changing one chromosome) 
are most used genetic operators.

Simulated annealing borrows its terminology from 
metallurgy, which emphasises its engineering 
roots. In this method, the algorithm starts 
from an initial point and utilises a mechanism 
to generate neighboring points. If the new 
neighbor point has a better objective function, 
the algorithm moves to that point and sets it as 
the new starting point. However, to avoid being 
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trapped in a local optimal solution, the algorithm 
accepts randomly moving to a worse feasible 
WVPU[��;OL�WYVIHIPSP[`�VM�[OPZ�TV]L�PZ�YLSH[LK�[V�
a threshold and a function called acceptance 
function.

;OLZL� OL\YPZ[PJ� HSNVYP[OTZ� HYL� ]HS\HISL�
ILJH\ZL� [OL`� JHU� NLULYH[L� ¸NVVK� LUV\NO¹�
solutions for high-dimensional problems 
in a timely fashion. However, there are 
multiple problem with their usage that highly 
reduces their value for business cases.  
A few of limitations are:

1. Most heuristic algorithms are random, which 
means they highly depend on the initial 
points and parameters and reproducibility of 
the results requires substantial care.

2. ;OL`� KV� UV[� N\HYHU[LL� H� IV\UK� VU� [OL�
optimality of the found solution.

3. Because of the randomness in the 
algorithms, they are not apt to sensitivity 
analysis and making business inference of 
the parameters. For example, the proposed 
solution of a maximisation problem might be 
worse with increase in the resources, which 
does not make sense.

;V� TP[PNH[L� [OL� HMVYLTLU[PVULK� WYVISLTZ� HUK�
avoid infeasible time performance, branch-and-
bound algorithms usually provide a good middle 
ground.

4. Concave and Linear 
*VU[PU\V\Z�2UHWZHJR�6W[PTPZLY�
(CaLCKO)

>L� JVUQLJ[\YL� [OH[� LɉJPLU[� HWWYVHJOLZ� [V�
exactly solve a continuous knapsack problem 
with box constraints can be grouped under three 
categories: (1) pegging algorithms that calculate 
the value of a primal variable explicitly and a dual 
]HYPHISL�ZOHKV^�WYPJL�PTWSPJP[S`�H[�LHJO�P[LYH[PVU�
B��D�� ���� PU[LYPVY� WVPU[� TL[OVKZ� [OH[� KLÄUL� H�
penalty for constraints and use a Lagrangian 
T\S[PWSPLY� MVY� ÄUKPUN� [OL� VW[PTHS� ]HS\L� VM� [OL�
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WLUHS[`�B��D��HUK�����T\S[PWSPLY�ZLHYJO�TL[OVKZ��
Z\JO�HZ�)YLHRWVPU[�B��D��PU�^OPJO�H�3HNYHUNPHU�
multiplier is calculated explicitly and decision 
variables are calculated implicitly. Because the 
optimisation problem we are concerned with 
involves only a single dual variable associated 
with the budget constraint (and the rest of the 
dual variables cover box constraints), multiplier 
ZLHYJO� TL[OVKZ� HYL� UH[\YHSS`� LɈLJ[P]L� MVY� V\Y�
problem.

;OL�*H3*26�HSNVYP[OT�PZ�HU�LUOHUJLK�]LYZPVU�
of the Breakpoint budget multiplier search 
HSNVYP[OT�B��D��;OL�)YLHRWVPU[�HSNVYP[OT�P[ZLSM�PZ�
HU�L_[LUZPVU�[V�,=(3<(;,�[OL�T\S[PWSPLY�ZLHYJO�
HSNVYP[OT��HZ�KLZJYPILK�PU�B��D��HJJVTTVKH[PUN�
generalised box constraints. Our enhancements 
ensure linear variables are incorporated together 
with strictly concave transformations under one 
single algorithm. While we highly recommend 
the interested reader to peruse the original 
WHWLY�B��D�[V�OH]L�H�IL[[LY�\UKLYZ[HUKPUN�VM�[OL�
algorithm, we provide our brief discussion of its 
workings.

>L� ÄUK� [OL� MVSSV^PUN� MHJ[Z� UV[L^VY[O`� PU� V\Y�
KPZJ\ZZPVU� VM� [OL� ^VYRPUNZ� VM� *H3*26� �HUK�
Breakpoint):

1. Dual variables are very easy to calculate 
in this problem. Because the optimisation 
problem has only one linear constraint and 
the rest of the constraints are just bounds, 
the shape of the dual objective function is 
linear.

2. An easy way to solve a linear continuous 
knapsack problem is to consider it as a sorting 
WYVISLT��;V�ZVS]L�P[��̂ L�KLÄUL�H�UL^�]HYPHISL�� 

and sort elements of D. in a 
KLJYLHZPUN�VYKLY��;OLU��^L�HZZPNU�

the budget to the variables in this ordering 
of D8&�\U[PS�I\KNL[� PZ�L_OH\Z[LK��;OPZ�JHU�IL�
done in E (# ?FG2(#))  time (although an E (#) 
[PTL�HSNVYP[OT�MVY�[OPZ�[HZR�L_PZ[Z�B��D��P[�OHZ�
a large constant).

3. In principle, the unbounded knapsack 
problem (i.e., where variables have no 
bounds) can be potentially solved using 
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the Newton's method. In the unbounded 
problem, the Lagrange multiplier is the 
same for all variables and equal to some  
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��;OLYLMVYL�� [OL�K\HS�WYVISLT� PU� [OPZ�
JHZL�PZ�H�YVV[�ÄUKPUN�WYVISLT�^P[O�H�

single variable.

4. For the box bounded problem, the upper 
SPTP[Z�HUK�SV^LY�SPTP[Z�VM�[OL�]HS\LZ�LɈLJ[P]LS`�
enforce a valid range of Lagrange multipliers. 
;OLYLMVYL�� [OL�ZLHYJO� YLNPVU� MVY� [OL�I\KNL[�
constraint multiplier can be further reduced 
I`� SPTP[PUN� P[� ^P[OPU� [OPZ� IV\UK�� ;OPZ� MHJ[�
PZ� \ZLK� PU� B��D� [V� KLSP]LY� HU� HSNVYP[OT�^P[O�E (# ?FG2(#)) performance. Unfortunately, 
naïve implementation of numerical search 
methods, such as Newton's method, 
may not be feasible and reliable because 
of discontinuities in the primal values 
corresponding to a Lagrangian multiplier. 
;OLZL�KPZJVU[PU\P[PLZ�HYL�JH\ZLK�I`�]HYPHISL�
bounds and linearly transformed variables 
that are commonplace in an MMM. It is 
[OLYLMVYL�ILULÄJPHS�[V�ÄUK�H�YHUNL�KL]VPK�VM�
KPZJVU[PU\P[PLZ�ÄYZ[�

5. ;OL� )YLHRWVPU[� HSNVYP[OT� HZZ\TLZ�
KPɈLYLU[PHISL� M\UJ[PVUZ� VU� [OLPY� KVTHPUZ��
Because power transformations do not have 
H�KLYP]H[P]L�H[����^L�KLÄUL�[OLPY�KVTHPU�H[��+ 
without loss of generality, because variables 
with power saturation function with a strictly 
positive upper bound can never assume 
zero investment at optimality in non-trivial 
problems.

6. Because the logarithmic element-wise 
functional form, ? #(6AB{1,'}), is 0 on [0,1], 
they impose a combinatorial complexity 
to the problem. We further claim that no 
polynomial time exact algorithm exists for this 
problem as long as )≠I) (proof in Appendix 
C���;OLYLMVYL��VUL�JHU�PUJS\KL�SVNHYP[OTPJHSS`�
[YHUZMVYTLK� ]HYPHISLZ� [V� *H3*26� VUS`� PM�
their lower bounds are greater than or equal 
to 1. We will use the forthcoming S-shaped 
optimisation algorithm for optimising the 
problems with general logarithmic functions.

7. ;YP]PHS� JHZLZ� PU� ^OPJO� [OL� [V[HS� I\KNL[� PZ�

equal to the sum of all lower bounds (optimal 
is setting variables at the lower bounds), or 
the total budget is equal to the sum of all 
upper bounds (optimal is setting variables at 
their upper bounds) are calculated before the 
main body of the algorithm.

)LMVYL�KLZJYPIPUN�[OL�HSNVYP[OT��̂ L�KLÄUL�ZVTL�
auxiliary variables and functions. We keep their 
KLÄUP[PVUZ�HUK�UV[H[PVUZ�HZ�JSVZL�HZ�WVZZPISL�[V�
B��D�MVY�IYL]P[ �̀

;V� RLLW� [OLZL�KLÄUP[PVUZ� Z\JJPUJ[��^L�KV� [^V�
slight abuses of notation:

1. We suppress index &� I`� ¸\UMVSKPUN¹� [OL�
problem from its matrix format row-wise to 
a vector format. From this point onward, 
index 8 refers to %(8 - 1)+& in prior sections. 
For example, <8 refers to <8,& in prior sections.

2. We suppress /3,&, /4,& parameters as well as 
the choice of the function as in Table 1 and 
represent them with the index 8 on  0(·). From 
this point forward,  0 8('8) shall represent  0('8,& , /3,&, /4,& ) in prior sections.

We partition media investment decision variables 8∈K, |K|≤ #×% with a linear transformation into 
set + and variables with a strictly concave 
transformation into set M so that  M∪+ = K. Sets O� YLÅLJ[�V\Y� J\YYLU[� RUV^SLKNL�HZ� [V�^OL[OLY�
]HYPHISLZ�HYL�Ä_LK�H[�[OLPY�IV\UKZ!

� K?P is the set of variables in which the lower 
bound is binding,

� K;P is the set of variables in which the upper 
bound is binding,

� K?#P is the set of variables in which the lower 
bound is not binding, and

� K;#P is the set of variables in which the upper 
bound is not binding.

Our algorithm will conclude when we know 
where every variable stands vis-à-vis their 
bounds: at the lower bound, at the upper bound, 
or strictly in between these two bounds; i.e., 

˄ ˄ ˄
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Note that the two pseudoinverses are equal 
for 8∈C, variables with strictly concave 
[YHUZMVYTH[PVUZ�� 5L_[�� ^L� KLÄUL� SV^LY� HUK�
upper investment functions Q8(R,K) and Q8(R,K) 
where each function uses the synonymous 
WZL\KV�PU]LYZL��;OL�KLÄUP[PVU�MVY�Q8(R,K) is:

(15)

(16)

>L� UL_[� KLÄUL� M\UJ[PVU� S8(⋅) as the marginal 
return on investment of variable 8 ∈ M. In other 
words, it is the ratio of the rate of increase in the 
objective function because of an incremental 
investment in variable 8 to the rate of budget 
consumption due to this incremental investment
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our knowledge of the variables O� ZH[PZÄLZ� [OL�
property O0�KLÄULK�HZ�[OL�MVSSV^PUN!

where 0i  (Ui)=1 for every 8 ∈ L. In our search for 
[OL�3HNYHUNL�T\S[PWSPLY�˂� [OH[�^PSS�VW[PTPZL�V\Y�
problem, we are naturally interested in the levels 
VM�[OL�]HYPHISLZ�H[�KPɈLYLU[�]HS\LZ�VM�[OL�3HNYHUNL�
multiplier; i.e., inverses of S 8(⋅). Unfortunately, 
this inverse function does not exist for linear 
]HYPHISLZ��;OL�WYVISLT�WVPU[Z�OH]L�[OL�WYVWLY[`�
of R=<8/"8∶ we don't know whether to invest at 
the lower bound, upper bound, or somewhere 
in between if the optimal Lagrange multiplier 
equals one of the <8/"8���;OLYLMVYL��^L�KLÄUL�[^V�
tightly related pseudo-inverse functions: a lower 
pseudo-inverse S 8 where we keep investment 
at the lower bound when R=<8/"8, and an upper 
pseudo-inverse S 8  where we push investment to 
the upper bound at R=<8/"8. Formally:

'˄

(17)

(18)
and

PU�^OPJO� [OL� C� ZPNU� KLUV[LZ� [OL� ZL[� KPɈLYLUJL�
VWLYH[VY��;OL�KLÄUP[PVU�VM�[OL�\WWLY�PU]LZ[TLU[�
function, Q8(R,K), is identical to the lower 
investment function, Q8(R,K), except that all  S 8 (⋅) are replaced with S 8(⋅). In principle both 
investment functions invest at the upper or lower 
bound for variable which are currently known to 
IL�Ä_LK�H[�IV\UKZ��HUK�V[OLY^PZL�PU]LZ[�H[�[OL�
corresponding S pseudo-inverses at R.

Similarly, we denote W (⋅, ⋅) and W (⋅, ⋅) as upper 
and lower budget slacks in accordance with the 
synonymous investment function, and to the 
extent of our knowledge about the investment 

)`�KLÄUP[PVU��Ψ (R,K)≤Ψ (R,K).
-PUHSS �̀� ^L� KLÄUL� SV^LY� HUK� \WWLY� IV\UKZ� VU�
the optimal Lagrangian multiplier R* to the extent 
of our knowledge, K, to squeeze it between 
some R(K) ≤R*≤R(K)��;OL�KLÄUP[PVUZ�HYL!R(K) = 6AB {{S 8(? 8) | 8 ∈ K} ∪ {S 8(; 8) 8 ∈ K;#P}},R(K) = 68# {{S 8(? 8) | 8 ∈ K} ∪ {S 8(; 8) 8 ∈ K ?#P}}.
When necessary, these bounds will serve as a 
range for the search of a feasible Lagrangian 
multiplier, exhausting the budget on a range 
devoid of any discontinuities (so that a numerical 
YVV[�ÄUKPUN�TL[OVK��Z\JO�HZ�5L^[VU�Z�TL[OVK��
can be readily used). We denote the set of 
possible discontinuities as P in the algorithm, 
and we do bisection search in a partially ordered 
set to shrink the range [R(K), R(K)] as much and 
HZ� MHZ[� HZ� WVZZPISL��/H]PUN�KLÄULK� [OL� HIV]L�
variables and functions, we next present an 
exhaustive pseudo-code for the algorithm.

(20)
(21)

(22)(23)

and similarly,

levels of the variables with respect to their 
IV\UKZ��;OLYLMVYL!Ψ (R,K) = [ -∑ "8]8(Q8(R,K)),˄8 =1

I
Ψ (R,K) = [ -∑ "8]8(Q8 (R,K)).˄8 =1

I

(19)
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29:           ^#: 8030:       ^?_^31:           K;P←K;P∪{8 | S(', ) ≥R, 8 ∉ {K;P∪K;#P }}32:           R*←R33:           Go to line 3634:       ^#: 8035: ^#: cd8?^36: '8*←Z+     ∀ 8 ∈ K ?P37: '8*←Z,     ∀ 8 ∈ K;P38: ! %←! - ∑             "8×'8*39: f←M \ {K ?P  ∪ K;P }40: 80 R*=0 A#: !%>0 gd^#41:     Obtain a reduced problem with variable set 

Optimising Marketing Mix Models with Concave and 
3PULHY�*VU[PU\V\Z�2UHWZHJR�6W[PTPZLY��*H3*26�

Algorithm 1 *VUJH]L�HUK�3PULHY�*VU[PU\V\Z�
Knapsack Optimiser (CaLCKO)

9LX\PYL!� (� ]LJ[VYPZLK� M\UJ[PVU� MVY� JHSJ\SH[PUN�
objective S(⋅), the pseudo-inverse functions S8 (⋅) and S 8(⋅), budget constraint functions Ψ (⋅, ⋅) and Ψ (⋅, ⋅), set of linear variables +, set of variables 
with strictly concave transformations M, unit cost 
vector ", lower bounds vector h+, upper bounds 
vector ' ,, and the total budget !. (As we have 
noted earlier, all matrix variables and functions 
are transformed to vectors by joining their rows.)1 : K={K ?P,K;P,K ?#P,K;#P}←{∅,∅,∅,∅},R*=0,R←∞,R←02: cd8?^ K¬K0 :F3:)←{S8 (h+ )| 8∉{K ?P∪K ?#P },8∈M}∪{S 8  (' , )| 8∉{K;P∪K;#P}, 8 ∈ M} ∪ {S 8 (h+ )| i∉ {K ?P∪K;P },8 ∈ +}8 88
4:    R←6^:8A#(K)5:    k←{8 | R*=    , 8 ∈ +}6:    80 Ψ (R,K)>0 gd^#7:       R←R8:       K;P←K;P∪{8 | S(', ) ≥R, 8 ∉ {K;P∪K;#P }}9:       K ?#P←K ?#P∪{8 | S(h+ ) ≥R, 8 ∉ {K ?P∪K ?#P }, 8 ∈ C}10:  ^?_^ 80 Ψ (R,K)<0 gd^#11:      R←R12:      K ?P←K ?P∪{8 | S('+ ) <R, 8 ∉ {K ?P∪K ?#P }}13:      K;#P←K;#P∪{8 | S(h, ) ≤R, 8 ∉ {K;P∪K;#P }, 8 ∈ C}14:      80 k=∅15:           K ?P←K ?P∪{8 | S('+ ) =R, 8 ∉ {K ?P∪K ?#P }}16:       ^?_^17:           80 Ψ (R,K)<0 gd^#18:                K ?P←K ?P∪{8 | S('+ ) =R, 8 ∉ {K ?P∪K ?#P }}19:           ^?_^ 80 Ψ (R,K)<0 gd^#20:                K;P←K;P∪{8 | S(', ) >R, 8 ∉ {K;P∪K;#P }}21:                R*←R22:                Go to line 3623:           ^?_^24:                K ?P←K ?P∪{8 | S('+ ) =R, 8 ∉ {K ?P∪K ?#P }}25:                K;P←K;P∪{8 | S(', ) >R, 8 ∉ {K;P∪K;#P }}26:                R*←R27:                Go to line 3628:                ^#: 80

"8<8

8
8

8
8

8

8

8

8

8

8
8

8

8 ∈{K?P ∪ K;P }

Q and budget ! %, search for an optimal R* in range  [R (K), R(K)] that satisfies ! %-∑    "8Q8 (R*, K)=042: ^#: 8043: '8*←Q8  (R*,K)     ∀ 8 ∈ f44: ! %←!%-∑"8' 8*45: k←{8 | R*=      , 8 ∈ +}46: 80 k≠∅ A#: !%>0 gd^#47:      Generate a balanced optimal solution with:48:      l*← 
49:      '8*← l* ',+(1-l* ) '+     ∀ 8∈k50: ^#: 8051: Report '* as the optimal solution.

"8<8

8 8

8∈Q

8∈f

! % - ∑8 ∈ k "8 '+8∑8 ∈ k "8 (', - '+ )8 8

In the above algorithm, set k tracks the presence 
of alternative optima. We show that for non-
trivial problems, the algorithm always converges 
[V� [OL� VW[PTHS� ZVS\[PVU� PU� H� ÄUP[L� U\TILY� VM�
iterations. We denote the set of feasible solutions 
at iteration (m) as Sm and the initial and terminal 
set of solutions as S0 and S� respectively (in case 
[OL�HSNVYP[OT�L]LY�Z[VWZ���0U�������^L�ÄYZ[�ZOV^�
in Theorem 1 that any member of the non-trivial 
optimal solution (' ∈ '*) is a member of the set 
of feasible solutions at any arbitrary iteration p, 
i.e. '*⊆ Sm     ∀ m ∈ {0,1,… }��;OLU��^L�ZOV^�[OH[�
all members of the terminal set are within this 
optimal set, in other words S�⊆ '* (Theorem 2). 
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4.1. Optimality

We prove that for any non-trivial problem the 
optimal is within the set of feasible solutions of 
any iteration of the algorithm.
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;OPZ�[^V�^H`�YLSH[PVUZOPW�HɉYTZ�[OH[�S�∈ '*.
We then prove each iteration of the algorithm 
strictly reduces the feasible set of solutions 
(i.e., Sm+1⊂ Sm     ∀ m ∈ {0,1,… }) in Theorem 3 using 
arguments from §4.2. Subsequently, we can 
trivially explain why the algorithm terminates in 
ÄUP[L�U\TILY�VM�P[LYH[PVUZ��>L�JSVZL�[OPZ�ZLJ[PVU�
presenting performance characteristics of 
*H3*26�PU������

Proof.�;OL�WYVVM�PZ�WYV]PKLK�PU�Appendix D. 

At the terminal iteration reverse condition is also 
true:

Theorem 2. Any member of the terminal set of 
the algorithm (S�) is an optimal solution, i.e.

S�⊆ '*. 

Theorem 1. Suppose we have a non-trivial 
problem. Let '* be the optimal solution of 
Equation (11), R* the corresponding Lagrangian 
multiplier, and p an arbitrary iteration of algorithm 
[OH[� PZ� KLÄULK�HZ�Km= {K ?P ,K;P ,K ?#P ,K;#P } (Km is 
not necessarily a member of (O0 ���;OL�MVSSV^PUN�
holds:

(1) R*∈[R (Km ),R (Km )],
(2) R*  and '*  will satisfy the investment boundsQ8(R*,Km  )≤'8*≤Q8 (R*, Km )    ∀ 8∈{1,2,…,#},
(3) R* will not give a slack at the upper investment 
function (Ψ(R*,Km )≤0) and will not overspend at 
the lower investment function (Ψ (R*,Km )≥0).
Since these conditions match the membership 
conditions of Sm, we conclude'* ⊆ Sm  ∀ m ∈{0,1,2,…}.

m m m m

(24)

(25)

(26)

Proof.�;OL�WYVVM�PZ�WYV]PKLK�PU�Appendix E.

With above two theorems we conclude for any 
non-trivial problem S�⊆ '*. Now, let's examine if 
*H3*26�HSNVYP[OT�[LYTPUH[LZ�PU�ÄUP[L�Z[LWZ�

(27)

4.2. Convergence

Our subsequent theorem ensures that at each 
iteration the algorithm strictly reduces the 
feasible set

Sm+1⊂ Sm     ∀ m ∈ {0,1,2,…}.
Theorem 3. Let Km= {K ?P ,K;P ,K ?#P ,K;#P } and  m m m mRm∈[R (Km ),R (Km )] be given from any arbitrary 
iteration m�VM�*H3*26�
At least one variable will have narrowed bounds 
HZ�H�YLZ\S[�VM�HU`�HYIP[YHY`�P[LYH[PVU�W�VM�*H3*26�
by becoming a member of Km (or Km already 
describes an optimal solution generated by the 
HSNVYP[OT���;OLYLMVYL��[OL�ZL[�Sp strictly reduces 
in each iteration; i.e., Sm+1⊂ Sm.
Proof.�;OL�WYVVM�PZ�H]HPSHISL�PU�Appendix F.

Because the set K� PZ�JVTWHJ[�I`�KLÄUP[PVU�VM�[) ''], '* ⊆ S0 (Theorem 1), S�⊆ '* (Theorem 2), 
and Sm+1⊂ Sm   ∀ m ∈ {0,1,… } (Theorem 3���*H3*26�
PZ�H�Z[YPJ[�JVU[YHJ[PVU�THWWPUN� B� D�HUK�OLUJL�
should converge to the set of optimal solutions 
PU�H�ÄUP[L�U\TILY�VM�P[LYH[PVUZ�

An equivalent restatement of Theorem 3 is 
[OH[� *H3*26� W\[Z� H[� SLHZ[� VUL� ]HYPHISL� VM�M 
into Km� H[� LHJO� P[LYH[PVU�� ;O\Z�� *H3*26� ÄUKZ�
the complete set of information describing the 
VW[PTHS�ZVS\[PVU�H[�H�ÄUP[L�U\TILY�VM�P[LYH[PVUZ�
(or terminates before that by reporting an optimal 
ZVS\[PVU���(M[LY�ÄUKPUN�O0, any nontrivial reduced 
problem is an unbounded problem which can 
IL� ZVS]LK� PU� ÄUP[L� P[LYH[PVUZ� \ZPUN� 5L^[VU�Z�
TL[OVK��;OLYLMVYL��*H3*26�HS^H`Z�[LYTPUH[LZ�
PU�H�ÄUP[L�U\TILY�VM� P[LYH[PVUZ�^P[O�HU�VW[PTHS�
solution. In the next subsection, we discuss the 
HZ`TW[V[PJ�[PTL�JVTWSL_P[`�VM�*H3*26�
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4.3. Performance Characteristics

Within the loop described between Line 2 and 
Line 35 of the Algorithm 1 description, the 
approximate median of a vector can be found 
in E(#). Similarly, other calculations in this loop 
can be done in E(#)�� ;OLYLMVYL�� [OL� PU[LYUHS�
operations of the algorithm can be done in linear 
time. Because we select R at each iteration as the 
pseudo-median, about half of the bounds are set 
HZ�LɈLJ[P]L�VY�PULɈLJ[P]L�H[�LHJO�P[LYH[PVU��;OPZ�
requires E(# log2(#)) iterations to exit the loop. 
;OPZ�LɈLJ[P]LS`�KLÄULZ�[OL�U\TILY�VM�P[LYH[PVUZ�
MVY� [OL� SVVW�� ;OL� Z\IZLX\LU[� VWLYH[PVUZ�
following the loop require less than E(# log2(#)) 
operations to set the reported optimal solution 
HUK� [V� YLHJO� H� WYLZWLJPÄLK� WYLJPZPVU� PU� [OL�
Newton's algorithm for any remaining nontrivial 
YLK\JLK� WYVISLT�� ;VNL[OLY�� [OPZ� L_OPIP[Z� [OL�
performance characteristics of E(# log2(#)) for 
*H3*26�
4.4. Benchmarking Analysis

Next, we perform a benchmarking analysis 
to demonstrate the typical performance of 
*H3*26�JVTWHYLK�^P[O�[^V�]PHISL�HS[LYUH[P]LZ!

�࠮ NLOpt: the derivative-based local 
optimisation engine MMA (Method of Moving 
(Z`TW[V[LZ��B��D��ILZ[�MVY�JVU]L_�ZLWHYHISL�
problems, implemented on the NLOpt 
VW[PTPZH[PVU�Z\P[L�KL]LSVWLK�H[�40;�B��D�

�࠮ *VTTLYJPHS!� H� ZWLJPHSPZLK� JVTTLYJPHS�
VW[PTPZH[PVU� Z\P[L� ^YP[[LU� PU� *��� HUK�
wrapped in a dynamic-link library (DLL).

/3'-^Bm (      )

For this analysis, we call all three engines (NLOpt, 
*VTTLYJPHS��HUK�*H3*26��MYVT�^P[OPU�HU�9�B��D�
environment. We generate 30 random problem 
PUZ[HUJLZ�LHJO�MVY�*H3*26��JVTTLYJPHS�ZVS]LY��
and NLOpt at each of the problem sizes (i.e., # ) 
of 1K, 5K, 10K, 20K, 30K, 40K, and 50K.

All investment opportunities in each instance 
lead up to a unit return expressed in the 
exponential functional form described in Table 1:                      with a cost of $1 per unit.

-PN\YL� ��� (]LYHNL� [PTL� WLYMVYTHUJL� VM� *H3*26� PU�
JVTWHYPZVU�^P[O� [OL�VWLU�ZV\YJL�VW[PTPZH[PVU�Z\P[L�
NLOpt and a specialised commercial optimisation 
engine with increasing problem size. Note the log-
scale of the time axis.

For each investment opportunity, we generate 
the functional form parameter of an investment 
opportunity, /3 , independently at random with 
a uniform distribution between 100 and 5,000. 
Each random instance has a budget of 1,000 
times the number of investment opportunities. 
All investment opportunities are allowed to be 
invested freely; i.e., the upper and lower bounds 
for each investment opportunity is the total 
budget and zero, respectively.

We depict the average convergence time of 
the three engines in -PN\YL��. Error bars mark 
two standard deviations above and below the 
TLHU��;OL�ZVS\[PVU�H[�L]LY`�PUZ[HUJL�HUK�LUNPUL�
VIL`Z� [OL� ULJLZZHY`� HUK� Z\ɉJPLU[� VW[PTHSP[`�
conditions at half machine precision.

As expected, the specialised commercial 
optimisation routine outperforms the open 
source engine for small (and most typical) 
problem sizes, but the open source engine has 
IL[[LY� SHYNL�WYVISLT� WLYMVYTHUJL�� *H3*26�
markedly outperforms both engines up to 
HU� VYKLY� VM� THNUP[\KL�� ;OPZ� WLYMVYTHUJL�
advantage is more pronounced as the problem 
ZPaL� NL[Z� SHYNLY�� ;OPZ� VIZLY]H[PVU� HSZV� THRLZ�
sense from a theoretical standpoint as the  E(# log2(#)) theoretical worst-case performance 
is better than the average time performance 
stated for general purpose linear optimisation 
B��D�� ^OPJO� [OLVYL[PJHSS`� PZ� LHZPLY� [OHU� NLULYHS�
purpose convex optimisation.
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