
Final Report for

Los Alamos National Laboratory

Machine Learning Algorithms for Graph-Based
Representations of Fracture Networks

Fall 2016 – Spring 2017

Team Members

Adrian Cantu
Zhengyang (Michael) Guo
Priscilla Kelly
Sean Matz
Manuel Valera (Project Manager)

Advisor

Allon Percus

Liaisons

Jeffrey Hyman
Gowri Srinivasan
Hari Viswanathan

Abstract

Microstructural information, such as fracture size, geometry, aperture, and ma-
terial properties, plays a key role in modeling the dominant physics for flow
propagation through fractured rock. Discrete fracture network (DFN) compu-
tational suites, such as DFNWORKS, have recently been developed to simulate
flow and transport in such media. These methods allow for particle tracking, re-
vealing a small backbone of fractures through which most transport occurs, and
therefore providing a significant reduction in the effective size of the fracture
network. However, the simulations needed for particle tracking are computa-
tionally intensive, and may not be scalable to large systems.

In this Mathematics Clinic project, conducted at Claremont Graduate Uni-
versity under the sponsorship of Los Alamos National Laboratory, we introduce
a machine learning approach to characterizing transport in DFNs. We consider
a graph representation where nodes signify fractures and edges denote their in-
tersections. Using supervised learning techniques that train on particle-tracking
backbone paths found by DFNWORKS, we predict whether or not fractures con-
duct significant flow, based primarily on node centrality features in the graph.
Our methods run in negligible time compared to particle-tracking simulations.
We find that our predicted backbone can reduce the network to approximately
20% of its original size, while still generating breakthrough curves in close agree-
ment with those of the full network. Finally, we present a modeling framework
for the dynamic problem of fracture propagation, ultimately intended to provide
rapid predictions of when and where material failure occurs.

Contents

Abstract 3

1 Introduction 7
1.1 Sponsor . 7
1.2 Background . 7
1.3 Project Goals . 9

2 Classification Methods 15
2.1 Node Features . 16
2.2 Random Forest . 22
2.3 Support Vector Machines . 24
2.4 Two-Stage Method . 27
2.5 Dynamic Graph . 28

3 Results 31
3.1 Performance Measures . 31
3.2 Random Forest . 32
3.3 Support Vector Machine . 35
3.4 Validation . 37
3.5 Two-Stage Method . 40
3.6 Dynamic Graph . 40

4 Conclusions 43

A Code Description 45
A.1 Dependencies . 45
A.2 Quick start . 45
A.3 Files . 46
A.4 Folders . 47

Bibliography 49

Chapter 1

Introduction

1.1 Sponsor

Our CGU Math Clinic team has been working under the sponsorship of Los
Alamos National Laboratory (LANL), a United States Department of Energy na-
tional laboratory located in Los Alamos, New Mexico. LANL was established in
1943 to develop nuclear weapons during World War II. A current effort at LANL
involves developing a method of modeling fractures which can exist in shale gas
reserves and after nuclear underground explosions. In order to make the pro-
cess more computationally efficient, they aim to develop machine learning al-
gorithms to characterize primary flow subnetworks within fractured subsurface
materials, and to model the development and propagation of fractures under
load.

1.2 Background

Discrete fracture networks (DFN) have been a topic of interest since 1990 when
researchers began applying network theory to fracture networks [1]. High value
applications, such as water quality monitoring [2], accessing natural gas [3, 4],
and the monitoring of gas emissions [5] have motivated the development of
high-fidelity models which could be used to predict flow.

Large rock structures contain connected networks of fractures that conduct
fluid. The DFN models a fracture network as a random set of intersecting frac-
ture planes, whose statistical properties match those of the original material.
These statistical properties can include a multitude of hydrological and geomet-
ric quantities associated with each plane. Computational suites such as DFN-
WORKS [6], developed at LANL, use these properties to simulate flow and trans-

8 Introduction

port through the fracture. Such simulations allow more accurate prediction of
fluid mechanics than is typically possible using continuum models [7, 8]. On
the other hand, a subsurface fracture network can typically contain millions of
fractures, with thousands of volume elements needed to describe each fracture.
Resolving flow in such a structure is an enormous computational undertaking.

Fortunately, fracture systems often exhibit flow channeling. These channels
form a primary flow subnetwork within the DFN, where much of the flow and
transport takes place [9, 10, 11, 12, 13, 14]. Restricting simulations to this sub-
network, or “backbone,” offers considerable computational savings. Methods
such as particle flow simulations have been developed to determine which frac-
tures comprise the backbone [15, 16]. An example is given in Figure 1.1, show-
ing (a) the full DFN and (b) the backbone extracted using particle trajectories.
However, these methods require computing transport through the entire frac-
ture network. Furthermore, since a given DFN is only one random realization of
a fractured material, the process must be repeated numerous times, to generate
sufficient data to reduce the statistical error in the quantities measured.

(a) (b)

Figure 1.1: (a) Full DFN composed of 499 fractures. (b) Backbone extracted
from (a) using particles trajectories, with particles flowing from inlet plane on
front left to outlet plane on rear right. Figure by Jeffrey Hyman [17].

A separate challenge is understanding how fractures propagate over time,
notably to predict how and when such propagation leads to material failure.
High-resolution models such as the hybrid optimization software suite (HOSS)
developed at LANL can simulate crack propagation in brittle materials [18]. How-
ever, the computational barrier is even more significant here, with millions of
degrees of freedom needed at each time step to describe the dynamics. Unless
a different approach is used, modeling interactions of fractures over time can

Project Goals 9

quickly become intractable.

1.3 Project Goals

It has been observed that flow through sparse fracture networks is governed
more by the network topology, namely which fractures connect to which others,
than by the hydrological details of the fractures [19]. This raises the question of
whether it is possible to identify the backbone of the network purely from topo-
logical characteristics. Doing so would solve the computational bottleneck of
having to simulate flow and transport explicitly. The difficulty is determining
exactly how to combine topological properties for this purpose.

In recent years, there has been increased interest in the use of machine learn-
ing in the geosciences. A range of different regression and classification methods
have been applied to a model of landslide susceptibility, demonstrating their
predictive value [20]. Community detection methods have been used in frac-
tured rock samples to identify regions expected to have high flow conductiv-
ity [21]. Clustering analysis has been used in subsurface systems to construct
more accurate flow inversion algorithms [22]. The main goal of the 2016–17
CGU Math Clinic project is to use machine learning techniques to reduce DFNs
to subnetworks that carry most of the network’s flow. By treating topological
properties as features that describe fractures in the network, we develop fast
classification methods that learn to characterize the backbone in the feature
space.

Python code for all of our classification methods is available on our project
GitHub site. The code is organized into jupyter notebooks, which are described
in Appendix A.

1.3.1 Graph representation

Our approach is based on representing a given DFN by a graph, where a node
in the graph represents a fracture in the network, and an edge connecting two
nodes in the graph represents an intersection between two fractures. Under this
construction, the graph retains topological information about the network as
node-based properties or features. An example of representing a DFN by a graph
is given in Figure 1.2 for a two-dimensional six-fracture network.

Such a graph representation was proposed by Ghaffari, et al. [23] and inde-
pendently by Andresen, et al. [24], in order to study the network topology of both
two- and three-dimensional fracture systems. The graph mapping allowed for
a characterization of the topology of fracture networks, and moreover enabled

10 Introduction

Figure 1.2: Graph representation of a six-fracture Discrete Fracture Network in
two-dimensions. a) fractures in the 2D network are translated to nodes and their
intersections become edges in b).

quantitative comparisons between real fracture networks and models generat-
ing synthetic networks. Vevatne, et al. [25] and Hope, et al. [26] have used this
graph construction for analyzing fracture growth and propagation, showing how
topological properties of the network such as assortativity relate to the growth
mechanism. Santiago, et al. [27, 21, 28] have proposed a method of topological
analysis using a related graph representation of fracture networks. By measuring
centrality properties of nodes in the graph, which describe characteristics such
as the number of shortest paths through a given node, they developed a method
intended to predict regions of high flow conductivity in the network.

1.3.2 Machine learning approaches

In our work, we adopt the approach of using different forms of node centrality as
predictors of flow. We consider four centrality measures as node features: three
of these are global topological measure, while one is a local topological measure.
We supplement the centrality measures with two physical (geometric) features
that describe the fracture in the DFN model. On the basis of these six features,
we apply machine learning to identify systematically the network’s backbone.
Our two machine learning algorithms are random forest and support vector ma-
chines. Both are supervised learning methods: given training data consisting of
DFNs whose backbones have already been determined through simulation, they
learn how to reduce new DFNs to appropriate subnetworks.

A random forest is constructed by sampling the training set with replace-
ment, so that some data points may be sampled multiple times and others not

Project Goals 11

at all. Those data points that are sampled are used to generate a decision tree,
which outputs a classification based on feature values. Those data points that
are not sampled are run through the tree to determine its quality. The proce-
dure is repeated so as to generate a large collection of trees. A test data point
is then classified by having each decision tree “vote” on its class. This leads not
only to a predicted classification, but also to a measure of certainty (the fraction
of trees that voted for it) as well as to an estimate of the importance of each fea-
ture [29, 30, 31, 32, 33, 34, 35]. That final estimate is particularly useful when the
features consist of quantities that measure different aspects of node centrality.

Support vector machines (SVM) separate high-dimensional data points into
two classes by finding an appropriate hyperplane. Based on the generalized
portrait algorithm [36] and subsequent developments in statistical learning the-
ory [37], the current version of SVM [38] uses kernel methods [39] to generalize
linear classifiers to nonlinear ones. SVMs have been shown to perform well in
applications with highly correlated feature variables, in part because one can
choose kernels or separator boundaries that are most appropriate to the feature
space describing the data [40, 34].

One challenge in the DFN data is the imbalance between the size of the back-
bone (“positive”) and non-backbone (“negative”) class. In data from simula-
tions, only about 7% of fractures are part of the backbone, reflecting the substan-
tial network reduction afforded by the primary flow subnetwork. But this poses
complications in validating our predictions. Simply trying to maximize the over-
all rate of correct classification could result in labeling much of the backbone as
non-backbone (false negative), in which case the flow properties of the reduced
network would not match those of the original. We therefore consider both pre-
cision (ratio of true positives to all positives) and recall (ratio of true positives
to true positive plus false negatives). There is a trade-off between these two,
controlled by how strict the classifier is in labeling a sample as positive. While
our primary objective is recall, so as to minimize false negatives that can ob-
struct flow, we are also concerned with exploring the precision/recall space. We
therefore use a grid search method that identifies classifier parameters critical
to precision and recall. By modifying these parameters, we evaluate how far we
are able to reduce the network without significantly affecting flow.

It is important to note that our objective is flow-maintaining network re-
duction, which is not identical to predicting the backbones determined from
particle-based simulation. While we use these backbones as training data for
our classifiers, the main validation of our results comes through considering the
breakthrough curve (BTC). This curve shows the distribution of simulated par-
ticles passing through the network from source plane to target plane in a given
interval of time. We would like the BTC for our reduced networks to match that

12 Introduction

of the full network in a number of respects, including peak breakthrough time,
and the nature of the tail of the distribution. While the particle backbone is im-
portant for identifying where mass transports through the network, it is only one
of many valid network reductions from the perspective of characterizing flow.

We find that, under different parameter choices for random forest and SVM,
we are able to reduce DFNs on average to between 39% and 2.5% of their orig-
inal number of fractures. The two extremes correspond to recall values of 96%
and 20%. Reductions to as little as 21% (with recall of 75%) provide good BTC
matches, with Kolmogorov-Smirnov statistic values of 0.26 or less. We also as-
sess the importance of the different features used to characterize the data, find-
ing that they cluster into three natural groups. The global topological quantities
are the most significant ones, followed by the one local topological quantity we
use. The physical quantities are the least significant ones, though still necessary
for the performance of the classifier. A manuscript describing our work and the
results above has been submitted for publication [17].

We consider a further classification approach that, based on initial tests,
not only provides significant network reduction but also comes closer to re-
constructing the particle backbone itself. This is a two-stage method, which
first forms an initial classification of nodes next to the source and to the sink,
and then attempts to propagate labels from nodes identified as backbone. The
method was originally motivated by the observation that straightforward appli-
cations of random forest and SVM, as described above, can result in backbones
that do not connect to both the source and sink. Clearly, such disconnected
structures are not usable as a flow subnetwork. In reality, the problem only oc-
curs at parameter choices giving very low recall. But even there, the two-stage
method almost always gives a connected backbone. At parameter choices giv-
ing high recall, the two-stage method appears to provide outstanding reduction,
yielding a subnetwork with only 17% of the original number of fractures while
maintaining 90% recall. This method merits further study and development.

1.3.3 Dynamic problem

Finally, we investigate the dynamic problem of modeling fracture growth, and
of predicting material failure using machine learning techniques. A number of
recent studies have considered modeling crack propagation using a set of rules
that act directly on the graph representing the fracture network [25, 26, 18, 41,
42]. To understand this process, consider a fracture with multiple intersections,
modeled as a node in a graph with multiple neighbors. Fracture networks have
been found to exhibit strong negative correlations in the degree of neighboring
nodes; there is a tendency for nodes of high degree (many neighbors) to con-

Project Goals 13

nect to nodes of low degree (few neighbors) and vice versa. Such networks are
called disassortative. The strong correlations lend credence to the idea that new
fractures depend heavily on the existing network, and that the growth process is
similar to a preferential growth mechanism, where new nodes are more likely to
couple to existing nodes of high degree. Note that node degree may or may not
be the best metric to utilize for preferential growth; for example, Vevatne et al.
[25] use the lengths of existing fractures as the growth metric. We present a pre-
liminary study of fracture growth using a basic random graph model, and sug-
gest improvements to this model. We also discuss promising methods for rapid
prediction of material failure, using classification based on topological and geo-
metric features.

Chapter 2

Classification Methods

Given a set of features and class assignment for some observations, supervised
learning algorithms try to “learn” the underlying function that maps features to
classes. Those observations are the training set. The learned function can then
be used to classify new observations. In our study, we use as observations the
nodes (fractures) from 80 graphs as a training set. We then test the function
using nodes from 20 graphs as a test set.

One challenge we face is a significant imbalance in the number of observa-
tions in each class. For the 80 graphs in the training set, only about 7 percent
of nodes are part of the backbone class. A classification algorithm could simply
assign all nodes to the non-backbone class, and still achieve an overall classifi-
cation accuracy of 93 percent. Since our aim is to find a meaningful backbone,
careful attention must be given to identifying the parameters of our algorithms
that maximize the recall, or fraction of backbone nodes in the training set that
are correctly predicted.

In this chapter, we describe the features that we use to describe nodes, and
our machine learning methods based on random forests and support vector ma-
chines. Both are general-purpose supervised learning methods that are suitable
both geometric as well as non-geometric features. Furthermore, while both of
these algorithms are highly tunable, they rarely require very extensive parameter
tuning. We discuss our process for parameter selection, and how we use this to
investigate the tradeoff between network reduction and accuracy of flow proper-
ties. Both algorithms are implemented using the scikit-learn machine learning
package in python, with the functions RandomForestClassifier and SVC.

16 Classification Methods

2.1 Node Features

It may seem that the most natural way to identify a flow subnetwork is to con-
sider all possible source-to-sink paths, and to predict which of those are part
of the backbone. This approach, however, is impractical due to the exponen-
tial proliferation of possible paths. Instead, we consider individual nodes, and
investigate features describing these nodes that we expect to be insightful in pre-
dicting the backbone.

Recent studies suggest that graph-theoretic quantities associated with node
centrality can help describe crucial topological characteristics of the network [24,
25] and identify regions important in conducting flow [21, 28]. Such quantities
can be divided into two categories: global topological measures, which describe
a node’s place within a graph structure, and local topological measures, which
describe a node’s immediate neighborhood. We expect that both of these can
play a role in predicting the flow properties of a fracture in a network. We there-
fore consider features from both categories, calculated using the NETWORKX
graph software package [43]. We also supplement these with a third category of
features, representing physical properties of the fractures. Figure 2.1 illustrates
the six different features that we choose to describe nodes on a graph represent-
ing the DFN shown earlier in Figure 1.1. It shows how feature values relate to the
graph structure and to the particle backbone.

Code for generating the features described below is found on the GitHub site
in the jupyter notebook generate_features.ipynb (see Appendix A).

2.1.1 Global topological features

• The betweenness centrality [44, 45] of a node (Figure 2.1a) reflects the ex-
tent to which that node can control communication on a network. Con-
sider a geodesic path (path with fewest possible edges) connecting a node
u and a node v on a graph. In general, there may be more than one such
path: let σuv denote the number of them. Furthermore, let σuv (i) denote
the number of such paths that pass through node i . We then define, for
node i ,

Betweenness centrality = 1

(N −1)(N −2)

N∑
u,v=1
u 6=i 6=v

σuv (i)

σuv
, (2.1)

where the leading factor normalizes the quantity so that it can be com-
pared across graphs of different size N . Nodes with high betweenness cen-
trality might well be expected to have a large influence on transport across

Node Features 17

a) Betweenness centrality b) Source-to-sink current flow

c) Source-to-sink simple paths d) Degree centrality

e) Projected volume f) Permeability

Figure 2.1: Visualization of a graph derived from a random DFN as shown in
Figure 1.1. Blue circles represent normalized feature values using six different
features, in panels a) through f). Yellow square denotes source, yellow circle
denotes sink. Heavy lines represent particle backbone paths in the graphs. Note
varying extent of correlation between particle backbone and associated feature
strength.

18 Classification Methods

the network, and thus be fundamental to the backbone. Figure 2.1a con-
firms that many backbone nodes do indeed have high betweenness val-
ues. At the same time, certain paths through the network that are not part
of the backbone also show high values for this feature, reflecting the fact
that betweenness centrality considers all paths and not only those from
source to sink. It could therefore be an important feature for backbone
classification, but only in conjunction with others.

• Source-to-sink current flow (Figure 2.1b) is a centrality measure that is
similar to betweenness, but uses an electrical current model to measure
flow within network [46], and assumes a given source and sink. Imagine
that one unit of current is injected into the network at the source, one
unit is extracted at the sink, and every edge has unit resistance. Then,
the current flow centrality is equal to the current passing through a given
node. This is given by Kirchhoff’s laws, or alternatively in terms of the
graph Laplacian matrix L = D−A, where A is the adjacency matrix for the
graph and D is a diagonal matrix whose element Di i = ∑

j Ai j is the de-
gree of the node i . If L+ represents the Moore-Penrose pseudoinverse of
L, then for node i , we define

Current flow =
N∑

j=1
Ai j |

(
L+

i s −L+
j s

)− (
L+

i t −L+
j t

)|, (2.2)

where s is the source and t is the sink. Current-flow centrality is also
known as random-walk centrality [47] since the same quantity measures
how often a random walk from s to t passes through i .

Unlike betweenness centrality defined above, current-flow centrality ex-
cludes any nodes in the graph that branch off the central core. We there-
fore expect high current flow values to correlate with nodes that have large
influence on source-to-sink transport.

• Source-to-sink simple paths (Figure 2.1c) is a straightforward centrality
measure that counts non-backtracking paths that cross the graph from
source to sink. This information would seem essential for predicting a
backbone since such a path directly conducts flow through the material.
Similarly to the formalism for betweenness centrality,πst denotes the num-
ber of simple (non-backtracking) paths from source s to sink t , and πst (i)
denotes the number of such paths that pass through node i . We then de-
fine, for node i

Node Features 19

Simple paths = πst (i)

πst
, (2.3)

where normalization by πst allows to compare values of simple path cen-
trality across different graphs. Since the complexity of path enumeration
can scale exponentially in the size of the graph, we limit our search to
paths with 15 nodes or less. This restriction has physical justification, as
direct paths tend to be more common in backbones. While these path
lengths can vary considerably, we find empirically that if we increase the
upper bound on path length beyond 15, the effect on the simple path val-
ues is negligible.

Figure 2.1c illustrates that nodes with high source-to-sink simple path cen-
trality are more likely to lie on backbone paths than are nodes with high
betweenness centrality in Figure 2.1a. However, simple path centrality
also fails to identify one isolated backbone path that is disjoint from the
others. We expect it to serve an important role in backbone classification,
though again, only in conjunction with other features.

2.1.2 Local topological feature

• Degree centrality (Figure 2.1d) is a normalized measure of the number of
edges touching a node. For node i ,

Degree centrality = 1

N −1

N∑
j=1

Ai j . (2.4)

Nodes with high degree centrality tend to be concentrated in the core of
the network. Conversely, nodes with low degree centrality are often in the
periphery or on branches that cannot possibly conduct significant flow.
Furthermore, since the degree centrality of a fracture is the number of
other fractures that intersect with it, degree centrality is closely related to
fracture volume.

2.1.3 Physical features

We supplement the four topological features with two features describing phys-
ical and geometric properties of fractures.

• Projected volume (Figure 2.1e) measures the component of a fracture’s vol-
ume that is oriented along the direction of flow from inlet to outlet plane.

20 Classification Methods

Fracture planes have different orientations in the DFN, and those that are
oriented parallel to the main flow direction are more likely to conduct sig-
nificant flow than those that are oriented perpendicular the normal flow
direction. We therefore consider the projection of the volume onto the
axis of flow. Let fracture i have volume Vi and orientation vector Oi (unit
vector normal to the fracture plane). Taking the flow to be oriented along
the x-axis, the projected volume is expressed in terms of the projection of
Oi onto the y z-plane:

Projected volume =Vi

√
(Oi)2

y + (Oi)2
z . (2.5)

Figure 2.1e shows similarities between this feature and degree centrality,
but also some fractures where one feature correlates more closely with the
backbone than the other.

• Permeability (Figure 2.1f) measures how easily a porous medium allows
flow. Given the aperture size bi of fracture i , the permeability is expressed
as

Permeability = b2
i

12
(2.6)

The permeability of a fracture, which is nonlinearly related to its volume,
is a further measure of its transport capacity. As illustrated in Figure 2.1, it
displays similarities to both degree centrality and projected volume, with
backbone fractures almost systematically having high permeability values
(but the converse holding less consistently).

2.1.4 Correlation of feature values

As is seen in Figure 2.1, the feature values vary widely from one node to another
in ways that we aim to manipulate in order to predict backbone paths. Figure
2.2 shows correlation coefficients for pairs that include the particle backbone
and the six features that we have chosen. The fact that there are non-negligible
correlations between the backbone and these features suggests that they are rel-
evant ones for classification, although clearly no single feature is sufficient in
itself. We also notice from the correlation coefficients that features tend to clus-
ter naturally into the three categories above. The first three features, which are
the global topological ones (betweenness, current flow, and simple paths), have
significant mutual correlations among then. The same is true for the physical

Node Features 21

Figure 2.2: Heat map displaying correlations among the particle backbone and
the six features used.

features (projected volume and permeability), which also exhibit some cluster-
ing with the related local topological feature (degree centrality). The latter cor-
relations are consistent with our feature definitions above.

As a further illustration of both the relevance of the features chosen and the
complexities associated with using them, consider the scatter plot in Figure 2.3.
Here, we show values of source-to-sink current flow and source-to-sink simple
paths, for all fractures in the example DFN that we have been considering so far.
Fractures are colored according to whether or not they are in the particle back-
bone. On this two-dimensional plot, there is no clear boundary separating the
two classes, but some differentiation of class densities is noticeable over differ-
ent regions of the feature space. The plot confirms the effect, seen in Figure 2.2,
that backbone membership is very weakly correlated with lying on many simple
paths but somewhat more strongly correlated with high current flow. However,
it also suggests that the density of backbone nodes is actually larger towards the

22 Classification Methods

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Simple Paths

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cu
rre

nt
 F

lo
w

Backbone
Non-backbone

Figure 2.3: Scatter plot of feature values for source-to-sink current flow and
source-to-sink simple paths, showing class identification for each fracture.

upper left of the plot, where current flow increases but simple path centrality
decreases. This may reflect the fact that high current flow together with high
simple path centrality signifies a bottleneck in the graph, with many source-to-
sink paths needing to pass through a given fracture. The physical capacity limits
of such a fracture could prevent it from conducting large flow, forcing particles
to find alternate paths.

Code for generating the correlation plots above is found on the GitHub site,
in the jupyter notebooks main_classification_script.ipynb and 2-D_plot_features
.ipynb (see Appendix A).

2.2 Random Forest

2.2.1 Algorithm

A decision tree [48] is a tree whose interior nodes represent binary tests on a
feature (e.g., is CSS(i) > 0.25) and whose leaves represent classifications (e.g.,
node i is part of the backbone). An effective way of constructing such a tree
from training data is to measure how different tests, also called splits, separate
the data. The information gain measure compares the entropy of the parent
node to the weighted average entropy of the child nodes for each split. The splits
with the greatest information gain are executed, and the procedure is repeated
recursively for each child node until no more information is gained, or there

Random Forest 23

are no more possible splits. A limitation of decision trees is that the topology
is completely dependent on the training set, Variations in the training data can
produce substantially different trees.

The random forest method [49, 50] addresses this problem by constructing a
collection of trees using subsamples of the training data. These subsamples are
generated with replacement (bootstrapping), so that some data points are sam-
pled more than once and some not at all. The sampled “in-bag” data points are
used to generate a decision tree. The “out-of-bag” observations (the ones not
sampled) are then run through the tree to estimate its quality [29]. This proce-
dure is repeated to generate a large number (hundreds or thousands) of random
trees. To classify a test data point, each tree “votes” for a result. This provides not
only a predicted classification, determined by majority rule, but also a measure
of certainty, determined by the fraction of votes in favor. The use of bootstrap-
ping effectively augments the data, allowing random forest to perform well using
fewer features than other methods.

Additionally, random forest provides an estimate of how important each in-
dividual feature is for the class assignment. This is calculated by permuting the
feature’s values, generating new trees, and measuring the “out-of-bag” classifi-
cation errors on the new trees. If the feature is important for classification, these
permutations will generate many errors. If the feature is not important, they will
hardly affect the performance of the trees.

Code for running the random forest algorithm is found on the GitHub site in
the jupyter notebook main_classification_script.ipynb (see Appendix A).

2.2.2 Parameter Selection

In order to identify the parameters of random forest that affect our results most
significantly, we use a grid search cross-validation method, implemented with
the GridSearchCV function in scikit-learn. This method optimizes a classifier by
exhaustive search within a given range of parameter values, recursively build-
ing and testing models. Given the class imbalance in our problem, we set the
parameter ranges to aim for high recall. We find the greatest sensitivity to a pa-
rameter that sets the minimal number of samples in a leaf node. This parameter
forces the algorithm to reject any candidate split that would result in a child
node having fewer than a fixed number of observations. Adjusting that number
can prevent overfitting, which in the context of unbalanced classes could cause
practically none of the feature space to be assigned to the minority class.

Another important parameter choice involves class weights. When random
forest classifies a new observation, and the observation ends up in a leaf node
with training observations from more than one class, that particular tree will

24 Classification Methods

output a fractional vote for a class according to the number of training obser-
vations of that class in the leaf. One often sets all training observations to have
equal weights. However, by instead assigning training observations a weight that
is inversely proportional to class frequency, so that votes from the minority class
count more, we can effectively move the decision boundary in favor of a back-
bone classification.

Additional code for random forest parameter selection is found on the Git-
Hub site in the jupyter notebook model_selection.ipynb (see Appendix A).

2.3 Support Vector Machines

2.3.1 Algorithm

Support vector machines (SVM) use a maximal margin classifier to perform bi-
nary classification. Given training data described by p features, the method
identifies boundary limits for each class in the p-dimensional feature space.
These boundary limits, which are (p −1)-dimensional hyperplanes, are known
as local classifiers, and the distance between the local classifiers is called the
margin. SVM attempts to maximize this margin, making the data as separable
as possible, and defines the classifier as a hyperplane in the middle that sepa-
rates the data into two groups. The data points on the boundaries are called sup-
port vectors, since they “support” the limits and define the shape of the maximal
margin classifier. An example for two features (p = 2) is shown in Figure 2.4.

Once SVM has generated a maximal margin classifier from training data, one
uses this to predict the class of test data points. For example, given p features,
the classifier for a linear kernel can be written as:

f (x) =β0 +
p∑

j=1
β j x j , (2.7)

where x is a vector whose j th component x j represents the value of the test
point’s j th feature, and the parameters β j are derived from the training data.
The point is assigned to one class if f (x) < 0, and to the other if f (x) > 0. In
the p = 2 example of Figure 2.4, any test point lying on the left of the solid line
would be assigned to the blue class and any test point lying on the right would
be assigned to the red class.

SVM falls into the category of kernel methods, a theoretically powerful and
computationally efficient means of generalizing linear classifiers to nonlinear
ones. For instance, on a two-dimensional surface, instead of a straight line we
can choose a polynomial curve (Figure 2.5a) or a radial loop (Figure 2.5b), by

Support Vector Machines 25

Figure 2.4: Maximal margin classifier (solid line) chosen to maximize distance
between local classifiers (dashed lines). Support vectors are points on dashed
lines.

specifying the appropriate kernel function. Given n training points X(1), . . . ,X(n),
the classifier f (x) can be expressed in the general form

f (x) =α0 +
n∑

i=1
αi K (x,X(i)), (2.8)

where K (x,X(i)) is the kernel function chosen. Radial kernels often provide the
best classification performance, but at higher computational costs.

(a) (b)

Figure 2.5: (a) Maximal margin classifier with a polynomial kernel. (b) Maximal
margin classifier with a radial kernel.

26 Classification Methods

There are a number of practical considerations in feature selection for SVM.
First of all, we follow the usual practice of standardizing the data set as a prepro-
cessing step. This involves rescaling each feature so that values have mean zero
and variance one, thereby eliminating distortions that could bias the classifier in
favor of a given feature. Second of all, it is rarely a disadvantage to increase the
number of features used by SVM, even if those additional features are relatively
unimportant to the class assignment. The maximal margin classifier changes
very little if noisy features are added to the data, making SVM less prone to over-
fitting than many other methods. We therefore enhance our feature space for
SVM in the following way. For each of the six features discussed in Section 2.1,
we rank the values within a given graph: the lowest value within the graph has
rank 1, and so on. Rankings for tied values are arbitrary. We then consider the
raw and ranked values as separate features, doubling the size of the feature space
for both training and prediction.

Code for running the SVM algorithm is found on the GitHub site in the jupyter
notebook main_classification_script.ipynb (see Appendix A).

2.3.2 Parameter Selection

The most important parameter affecting the performance of SVM is the toler-
ance, known as C . In order to avoid overfitting, SVM often uses a “soft” mar-
gin rather than a hard one, allowing misclassification among the training data.
When C is set to be large, tolerance is low: C →∞ is the limiting case of the hard
margin described above, where local classifiers strictly bound data points from
one class. When C is small, tolerance is high: a training point from one class
may be found on either side of the local classifier.

As in the case of random forest, we use grid search cross-validation to iden-
tify and optimize crucial parameters such as tolerance. Due to the class imbal-
ance in the problem, it is necessary to adjust the weights associated with the
classes. Rather than setting the same tolerance value, C , for both classes, we as-
sign a weight to the tolerance for each class. This allows the local classifier to
more strictly bound the (minority) backbone nodes rather than the (majority)
non-backbone nodes. In this way, we can prevent the classifier from overfitting
the majority class while simultaneously preventing it from missing points in the
minority class. Using different weights allows us to construct classifiers that are
more likely or less likely to assign a node to the backbone class.

Additional code for SVM parameter selection is found on the GitHub site in
the jupyter notebook model_selection.ipynb (see Appendix A).

Two-Stage Method 27

2.4 Two-Stage Method

We have also developed another classification method that uses two succes-
sive implementations of machine learning algorithms. Our two-stage method
is motivated by the observation that straightforward node classification using
RF or SVM can yield a disconnected backbone. Since each node is classified
independently, the algorithm cannot guarantee that the backbone will connect
the source to the sink, even if in practice this does normally occur in solutions
with higher recall. The two-stage method attempts to form source-to-sink paths,
while also coming closer to reproducing the particle backbone.

In the first stage, a small subset of nodes are classified. The subset consists
of the source node’s immediate neighbors and the sink node’s immediate neigh-
bors (Figure 2.6a), i.e., fractures on the inlet and outlet planes. These nodes are
either classified as backbone, or left as unclassified. There are two reasons for
making an initial round of predictions in this way. First, there is a much smaller
class imbalance next to the source and sink, with a significant fraction of back-
bone nodes in the training data. Second, if certain of these nodes can be iden-

Figure 2.6: Depiction of the two-stage method. In the first stage (a), certain
neighbors of the source and sink are identified as backbone (red). In the second
stage (b), a classifier that has been trained on neighbors of backbone nodes suc-
cessively identifies neighbors of red nodes as backbone (red) or non-backbone
(blue), until all nodes have been classified.

28 Classification Methods

tified as positive (backbone) with high accuracy, then it may be easier to obtain
accurate predictions of how flow propagates further through the network.

The second stage addresses precisely the flow propagation problem, but uses
a different classifier that is trained explicitly on neighbors of backbone nodes.
The algorithm starts from the nodes identified as backbone in the first stage, and
considers their neighbors, classifying them as backbone or non-backbone (Fig-
ure 2.6b, left). It then successively repeats this process on neighbors of nodes al-
ready classified as backbone, thereby generating backbone paths, until all nodes
have been classified (Figure 2.6b, right). This almost always results in a con-
nected source-to-sink backbone. If it does not, a connected backbone can be
enforced by requiring that at each step, at least one previously unclassified neigh-
bor is classified as backbone. Physically, this is similar to forcing flow to continue
propagating from backbone nodes.

In order to lower the rate of false positives, the algorithm uses an enhanced
space of ranked features. For the first stage, this consists of precisely the six raw
and six ranked features used for the SVM implementation in Section 2.3. For the
second stage, however, in addition to these twelve, the algorithm also consider
ranked feature values where the ranking is determined only among neighbors
of a given node. By doing so, it attempts to mimic the flow options available
to particles at a given fracture, incorporating the simultaneous use of local and
global information to predict how flow propagates.

For both the first and second stages, either RF or SVM may be used. The
same method does not necessarily need to be used in both stages: different com-
binations may be tried. Our implementation uses RF in both stages, and the first
stage employs the identical algorithm to that of section 2.2. However, the use of
the two-stage method results in considerably improved precision and recall, as
discussed below in section 3.5.

Code for running the two-stage algorithm is found on the GitHub site in the
jupyter notebook two_stage.ipynb (see Appendix A).

2.5 Dynamic Graph

We briefly considered the separate problem of fracture growth and propagation,
for predicting failure in brittle materials. The nature of the classification prob-
lem here is quite different from the static problem of backbone identification
that was our primary focus.

The first challenge is simply to develop a set of basic rules that model frac-
ture growth and material failure, understood as the moment when a failure plane
develops in the network. We use a straightforward dynamic graph model, moti-

Dynamic Graph 29

vated by random geometric graphs, and similar in some respects to the recently
proposed random neighborhood graph model [42]. We start with a collection
of nodes placed uniformly at random in a unit square. These nodes represent
“seeds” that subsequently grow into fractures. Initially, no edges exist. As the dy-
namic graph evolves, edges are added, representing the increasing intersection
of planes due to fracture growth. Eventually, a connected path of edges spans
the graph from one boundary to the opposite boundary, representing a failure
plane. The time it takes for this plane to appear is called failure time, and the
method used to attach edges in the graphs are a set of basic rules that emulate
stress applied in the material, to make the fractures grow and coalesce. Different
sets of rules have been applied in the literature [51, 25, 26].

For the details of our dynamic graph model, we adopt a scheme of grow-
ing ellipses. Each randomly placed seed (Figure 2.7a) is assumed to have a cer-
tain region of influence around it, represented by an ellipse of fixed eccentric-
ity. Ellipses are all aligned with their principal axis in the horizontal direction,
emulating a vertical stress field. As stress increases, ellipses grow as an increas-
ing multiple of their original size. When an ellipse has grown large enough to
include another node within it, the two nodes are connected by an edge (Fig-
ure 2.7b), representing fractures that have grown to intersect each other. Once a
path forms from the left boundary to the right boundary (Figure 2.7c), material
failure occurs and the process stops.

(a) (b) (c)

Figure 2.7: Simple dynamic case model using random geometric graphs with
growing ellipses. (a) Random initial placement of nodes is given. (b) An ellipse
is defined around every node with radius increasing over time, and edges added
between the node and all others that are inside. (c) Failure plane develops when
a path first spans the network.

In reality, initial crack seeds have an orientation. We assume that these ori-
entations are uniformly random. However, we also assume that cracks that are

30 Classification Methods

perpendicular to the stress field will propagate the fastest, whereas cracks that
are parallel to the stress field will not propagate at all. Therefore, we take a seed’s
original ellipse size to be proportional to the projection of the orientation vector
(orthogonal to the crack) onto the stress axis.

Code for the dynamic graph simulation is found on the GitHub site in the
jupyter notebook dynamic_graph.ipynb (see Appendix A).

The larger challenge is prediction and classification. While running this code
is computationally trivial, running more realistic crack propagation simulations
can exhaust computational resources. The intention is therefore to use our ran-
dom model and related ones to form a testbed for predicting failure paths, using
machine learning. Ideally, we want to identify fractures that lie on the failure
path without having to run the simulation, and purely from features associated
with the fracture topology and geometry. Identifying the failure path has similar-
ities to identifying a flow backbone, but the relevant features are hardly straight-
forward. There is no clear definition of node centrality in the initial graph, be-
cause initially there are no edges. The distance from a node to its nearest neigh-
bor may be a predictor for classification. More likely, however, one needs to
consider distances to the kth neighbor, with k > 1, in order to capture the global
information needed to predict failure.

Chapter 3

Results

We used a collection of 100 graphs, 80 of which were chosen as training data,
and 20 of which were chosen as test data. We illustrate certain results, including
breakthrough curves, on the DFN shown in Figure 1.1. Other results are based
on the entire test set, which consists of a total of 9238 fractures, 651 of which
(7.0%) are in the particle backbone and 8587 of which (93%) are not. The total
computation time to train both RF and SVM was on the order of a minute, negli-
gible compared to the time to extract the particle backbone needed for training.
Once trained, the classifier ran on each test graph in seconds.

3.1 Performance Measures

We define a positive classification of a node as being an assignment to the back-
bone class, and a negative classification as being an assignment to the non-
backbone class. True positives (TP) and true negatives (TN) represent nodes
whose backbone or non-backbone assignment matches that of the labeled train-
ing data. False positives (FP) and false negatives (FN) represent nodes whose
backbone or non-backbone assignment is opposite that of the labeled training
data. Therefore, one straightforward measure of success is the TP rate. Precision
and recall represent two kinds of TP rates:

Precision = T P

T P +F P
(3.1)

Recall = T P

T P +F N
(3.2)

Notice that precision is the number of true positives over the total number
that we classify as positive, whereas recall is the number of true positives over

32 Results

the total number of actual positives. These values give an understanding of how
reliable (precision) and complete (recall) our results are.

Note, however, that even though we train our classifier according to the par-
ticle backbone, our objective is not necessarily a perfect recovery of that struc-
ture. We aim to identify fractures that are a small subset of the full network, but
nevertheless conduct significant flow and provide good agreement with the full
network’s breakthrough curve. Many, but not all, of the fractures in the parti-
cle backbone are essential for this purpose. Thus, high recall is needed, though
not necessarily perfect recall. Precision is less essential: false positives will in-
crease the size of our remaining network, but even low precision could allow for
a significant reduction in the number of fractures. While we hope to reduce the
network while still maintaining flow properties, we also wish to study the trade-
off between these two goals.

3.2 Random Forest

We implemented random forest using the RandomForestClassifier function in
scikit-learn, on the six features described in Section 2.1. Parameters were set to
default values, except for the following: 250 trees were used (n_estimators=250),
the number of features to consider for the best split was given by the binary log-
arithm of the number of trees (max_features=log2), and information gain was
used to measure the quality of a split (criterion=‘entropy’). As noted in Sec-
tion 2.2.2, we also used voting weights inversely proportional to class frequency
(class_weight=‘balanced_subsample’), and then adjusted the minimum number
of training samples in a leaf node (min_samples_leaf) in order to vary precision
and recall. Table 3.1 gives the results from the classifiers generated with four
different values of min_samples_leaf.

Model Precision Recall Fractures remaining
RF(1400) 18% 90% 36%

RF(30) 26% 75% 21%
RF(15) 30% 65% 15%
RF(1) 58% 20% 2.5%

Table 3.1: Random forest models labeled by the value of the min_samples_leaf
parameter specifying minimum number of samples requires to be at a leaf node.
Percentages for precision, recall, and fractures remaining in network are calcu-
lated over all 20 graphs in the test set.

Random Forest 33

Cu
rre

nt
 fl

ow

Si
m

pl
e

pa
th

s

Be
tw

ee
nn

es
s

De
gr

ee
 c

en
tr

Pe
rm

ea
bi

lit
y

Pr
oj

 v
ol

um
e0.0

0.1

0.2

0.3

Figure 3.1: Importances of features based on training data for random forest.

Given that the full particle backbone accounts for only 7% of the fractures in
the test set, even classifiers with relatively low precision can reduce the network
significantly. That effect is seen in the results above.

Random forest also provides a quantitative estimate of the relative impor-
tance of each of the six features described in Section 2.1, based on how often
a tree votes for it. Using the RF(30) model on our 80 training graphs, we find
the feature importances shown in Figure 3.1. As can be seen, the source-to-sink
current flow, source-to-sink simple paths, and betweenness centralities are the
top importance features, followed by node degree, and followed finally by per-
meability and volume projection. Thus, as with the feature correlations shown
in Figure 2.2, the feature importances cluster into three natural groups. Global
topological features have the greatest importance, local topological features have
significant but lower importance, and physical features play only a small role in
classification. It is interesting to note that, by contrast with SVM, the perfor-
mance of random forest does not benefit from using additional features, such
as ranked values. The inherent bootstrapping of random forest enables strong
classification performance even with a relatively limited number of features.

Given the large relative importance of current flow, it is reasonable to ask
whether results would change significantly if we were to use this as our only fea-
ture. In that case, the simplest straightforward classification approach might be
to threshold according to current flow, labeling all fractures with values above
the threshold as backbone. When the threshold is set at zero, meaning that all
fractures with nonzero current flow are labeled as backbone, the result is simi-
lar to dead-end fracture chain removal common in the hydrology literature, but
more extreme in that it eliminates all dead-end subnetworks. This gives per-

34 Results

fect (100%) recall, since all fractures in the particle backbone necessarily have
nonzero current flow, and 15% precision, reducing the network to 50% of its
original size. However, difficulties occur when increasing the threshold. While
the precision and recall results (discussed below and in Figure 3.2) are in some
cases competitive with RF, the backbone itself stops being a connected struc-
ture and loses its physical relevance. By contrast, with the exception of the low-
recall case of RF(1), our multiple-feature classification methods always maintain
a connected backbone in spite of the fact that they classify fractures rather than
paths.

Just as one can vary the current-flow threshold to produce different preci-
sion/recall outcomes, one can adjust a given classifier. Note that this is not the
same as generating different classifiers from the training data, as we do in Ta-
ble 3.1. Instead, we take a trained classifier, and modify it to give more or fewer
positive assignments. By default, random forest assigns a node to the class re-
ceiving at least 50% of the (weighted) tree votes. Changing this threshold will
change the number of positive assignments. A low voting threshold will result in
high recall (few false negatives) but low precision (many false positives). A high
threshold will result in low recall (many false negatives) but high precision (few
false positives). In this way, by varying an adjustable parameter we can travel
along a precision/recall curve that has perfect recall as one extreme, and perfect
precision as the other.

Figure 3.2 shows precision/recall curves for the four RF classifiers, each one
with a marker indicating the precision and recall values corresponding to the
default 50% threshold used in Table 3.1. For comparison, we also show the preci-
sion/recall curve resulting from thresholding on current flow alone, as discussed
above. The four RF curves are similar to another, and the marker values ap-
pear to represent nearly the best precision/recall pairs obtainable using random
forest with our six features. Furthermore, the RF results lie appreciably to the
right of the current-flow results, except at the low-recall value of RF(1) where
the backbone is not systematically connected. Note that a perfect recovery of
training data would push the precision/recall curve to the far right of the figure:
100% precision and 100% recall. However, we again stress that our ultimate ob-
jective is not reconstructing training data, but rather reducing the network size
while maintaining crucial flow properties. These properties are measured by the
breakthrough curve (BTC), which we consider in the validation of our results, in
Section 3.4 below.

Support Vector Machine 35

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

RF(1400)
RF(30)
RF(15)
RF(1)
Current flow

Figure 3.2: Precision/recall curve for the four different random forest classifiers
in Table 3.1. Markers indicate default 50% classification threshold for the re-
spective model. For comparison, precision/recall curve is also shown based on
thresholding on current flow alone.

3.3 Support Vector Machine

We implemented SVM using the SVC function in scikit-learn, on twelve features
made of up the six raw features described in Section 2.1 as well as their ranked
counterparts. Parameters were set to their default values, which include a radial
kernel, except for those noted in Section 2.3.2. We chose an overall tolerance of
C = 0.01, weighted by additional coefficients (class_weight) for each class that
we adjusted in order to vary precision and recall. This yields a pair of tolerances
for the backbone and non-backbone classes. Table 3.2 gives the results from the
classifiers generated with four different pairs of tolerances.

As with random forest, we can further adjust each one of these four classi-
fiers to travel along a precision/recall curve. In SVM, the distance from a posi-
tively classified point to the decision boundary serves as a classification thresh-
old. By default, this is zero: a point anywhere on one side of the maximal margin
classifier (defined as positive distance) is assigned to the corresponding class.
But by setting a nonzero threshold distance (negative or positive), a given clas-
sifier can generate more or fewer backbone assignments. Figure 3.3 shows the
resulting precision/recall curves for the four SVM classifiers, each one with a
marker indicating the precision and recall values corresponding to the default

36 Results

Model Precision Recall Fractures remaining
SVM(0.90,0.054) 17% 96% 39%
SVM(0.90,0.063) 19% 90% 34%
SVM(0.70,0.070) 23% 78% 24%
SVM(0.70,0.190) 44% 46% 7.3%

Table 3.2: SVM models labeled by the tolerance for the backbone class and the
non-backbone class. The tolerance for a class is equal to C multiplied by its class
weight. Percentages for precision, recall, and fractures remaining in network are
calculated over all 20 graphs in the test set.

zero threshold that we use for Table 3.2. We again include the results of thresh-
olding on current flow alone, for comparison. Unlike in the case of RF, the four
SVM curves are noticeably different. However, notice that for all four of the
markers, the model we have chosen is the one providing both the highest pre-
cision and the highest recall values. This suggests that there are unlikely to be
parameter choices with significantly stronger classification performance than
the ones we use here.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

SVM(0.9,0.054)
SVM(0.9,0.063)
SVM(0.7,0.07)
SVM(0.7,0.19)
Current flow

Figure 3.3: Precision/recall curve for the four different SVM classifiers in Ta-
ble 3.2. Markers indicate classification with default threshold distance of zero
for the respective model. For comparison, precision/recall curve is also shown
based on thresholding on current flow alone.

Validation 37

3.4 Validation

In order to evaluate the quality of our classification results, we illustrate two
cases on the DFN from Figure 1.1. In Figure 3.4a, we visualize the result of
our model with the highest recall and lowest precision, SVM(0.90,0.054). Here,
most of the nodes in the particle backbone are classified as positive. The few
false negatives (FN) are near the source, and are primarily fractures intersecting
the source plane where high particle concentrations accumulate. False positives
(FP) are far more prevalent, forming many connected source-to-sink paths that
are not in the particle backbone. In spite of these, the reduced network identi-
fied by the classifier contains only 40% of the original fractures.

In Figure 3.4b, we visualize the result of our model with the highest preci-
sion and lowest recall, RF(1). We see almost no false positives (FP), but most of
the nodes in the particle backbone are missed. While the false negatives (FN)
near the source are not necessarily of great concern, as these simply represent
the inlet plane, it is notable that only one connected path exists between source
and sink. On other networks in the test set, the classifier does not even generate
a connected source-to-sink path at all, leading to the same disconnected back-
bone problem that occurs in current-flow thresholding. The drastic reduction of
network size, to 2% of the original fractures, results in too much loss of physical
relevance.

Considering these two extreme cases is instructive, but the more meaningful
results lie in between. Figure 3.5 shows breakthrough curves on this network
for a representative sample of four of our classifiers, along with the curve for
both the full network and the particle backbone. Broadly speaking, high recall
results in good breakthrough curve agreement, whereas high precision results
in good network reduction. Two of the four models (RF(30) and the high recall
SVM(0.90,0.054) seen above) correctly predict the peak of the curve, and both
match the tail closely. This suggests that both yield reduced networks with flow
properties close to those of the original network. The reduced network resulting
from RF(30) is 21% of its original size.

Finally, in order to quantify the tradeoff between breakthrough curve agree-
ment and network reduction, we calculate the Kolmogorov-Smirnov (KS) statis-
tic, giving a measure of “distance” between two probability distributions. The KS
statistic is independent of binning, and most sensitive to discrepancies close to
the medians of the distributions, making it particularly suitable for comparing
peaks of breakthrough curves. The results are summarized in Table 3.3. They
confirm that the model with highest recall, SVM(0.90,0.054), which reduces the
network to 40% of its original size, has a breakthrough curve close to that of the
full network (KS statistic 0.10).

38 Results

(a)

(b)

Figure 3.4: Extreme cases of classification results: (a) SVM(0.90,0.054) with high
recall and low precision (40% of network remaining), showing many false pos-
itives (FP) and relatively few false negatives (FN), and (b) RF(1) with high pre-
cision and low recall (2% of network remaining), showing many false negatives
(FN) and relatively few false positives (FP). Solid lines show predicted connected
paths from source to sink. Dashed lines show particle backbone.

Validation 39

0.5 1.0 1.5 2.0
Time [-]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
D

F

SVM(0.7,0.19), 5.6%

RF(15), 16%

RF(30), 21%

SVM(0.9,0.054), 40%

Full Network, 100%

Particle Backbone, 5.6%

100 101 102

Time [-]

10-5

10-4

10-3

10-2

10-1

100

P
D

F

SVM(0.7,0.19), 5.6%

RF(15), 16%

RF(30), 21%

SVM(0.9,0.054), 40%

Full Network, 100%

Particle Backbone, 5.6%

Figure 3.5: Predictions for the DFN from Figure 1.1, visualized as breakthrough
curves produced by DFNWORKS. Tail plot on right is displayed on log-log axes
for clarity. Representative results from four models are given, together with full
network and particle backbone. Legend shows model parameters and remain-
ing fractures in network. The last two classifiers provide good agreement while
reducing network to 21% and 40% of original size.

Model Fractures remaining KS
SVM(0.90,0.054) 40% 0.10
RF(1400) 38% 0.12
SVM(0.90,0.063) 35% 0.12
SVM(0.70,0.070) 22% 0.25
RF(30) 21% 0.26
RF(15) 16% 0.35
SVM(0.70,0.190) 5.6% 0.59
RF(1) 2.0% 0.68

Table 3.3: Results of applying four RF and four SVM models to the DFN from
Figure 1.1. Fractures remaining in network are those identified as backbone by
classifier. Values differ slightly from results over entire test set, due to graph-to-
graph fluctuations. KS statistic represents distance between breakthrough curve
on reduced network and on full network. Note that final model RF(1) does not
yield valid breakthrough curve on all graphs in test set, as it sometimes discon-
nects source from sink.

40 Results

3.5 Two-Stage Method

Results from the two-stage method are still preliminary. We have not included
these as part of our validation, and save a more complete study of the method
for future work. In our preliminary tests, we implemented the algorithm using
random forest for both stages, although one could also use SVM for either stage.

For the first stage, we used the identical RF parameters as in Section 3.2,
but with 500 trees (n_estimators=500). For the second stage, class imbalance is
practically not an issue, since we are classifying neighbors of backbone nodes.
Here, we again used 500 trees (n_estimators=500), and set all other parameters
to their default values.

Table 3.4 gives the results from the two-stage classifiers generated with two
different values of min_samples_leaf in the first stage, to control precision and
recall. We note that the method is able to achieve, simultaneously, high recall
and sufficient precision for significant graph reduction. Our preliminary results
suggest that this algorithm may provide a large improvement over the results in
Sections 3.2 and 3.3. Research is ongoing, and fully exploring the potential of
the two-stage method remains an open challenge.

Model Precision Recall Fractures remaining
Two-Stage(1400) 37% 90% 17%

Two-Stage(1) 45% 82% 13%

Table 3.4: Two-Stage method using random forest in both stages, labeled by the
value of min_samples_leaf used in the first stage. Percentages for precision, re-
call, and fractures remaining in network are calculated over all 20 graphs in the
test set.

3.6 Dynamic Graph

The results of our dynamic graph simulation are shown in Figure 3.6. Initial el-
lipse sizes depend on the (random) orientations of the starting seeds, but the
ellipses themselves are all oriented perpendicular to the stress field. We place
a source node outside of the left boundary, connecting it to all ellipses cross-
ing that boundary, and similarly with a sink node outside of the right boundary.
Material failure occurs when a path first appears from source to sink.

These simulation results, while preliminary, motivate a possible improve-
ment to the dynamic graph model. First of all, we see a number of clique-like

Dynamic Graph 41

(a) (b)

Figure 3.6: Results of dynamic graph simulation using growing ellipses. Major
axes are oriented horizontally and are twice the length of minor axes. (a) Initial
ellipses are placed randomly, and are of different sizes, depending on random
orientations of associated crack seed. (b) Source node on left connects to all el-
lipses crossing left boundary; sink node on right connects to all ellipses crossing
right boundary. Failure plane develops when path is created from source to sink.

structures in Figure 3.6b, with edge crossings and highly connected subgraphs.
Fracture networks with this topology are unlikely to have straightforward phys-
ical interpretations. Second of all, the graph has very few terminal nodes, un-
like the structure that we see in, for instance, the DFN from Figure 1.1. In or-
der to solve these problems while better modeling the underlying physics of
crack propagation, one might modify the dynamic graph model in the follow-
ing way [52]. Make all edges directed, always oriented from the larger ellipse
to the smaller ellipse. The direction of the edge therefore encodes the dynam-
ics of which fracture propagates into which other fracture. Furthermore, since
a fracture usually only grows in two direction, limit the number of outgoing di-
rected edges from a node to at most two. If two edges already start from a given
fracture, no further directed edges can come out from it, although new directed
edges can come into it.

Continuing the dynamic graph modeling and implementing a classification
approach to predicting the failure path remain to be explored as future prob-
lems.

Chapter 4

Conclusions

Simulating flow through fractured media is a major computational challenge.
The use of discrete fracture networks (DFNs) allows flow to be modeled by par-
ticle tracking. Furthermore, one can realize significant computational savings
by identifying a primary flow subnetwork within a DFN, and restricting simula-
tion to that backbone subnetwork. However, identifying the backbone by means
of particle simulations is itself too computationally intensive to be practical for
large networks.

In this clinic project, we have presented a novel approach to finding a back-
bone subnetwork that does not require resolving flow in the network, and that
takes minimal computational time. The method involves representing a DFN
with an underlying graph whose nodes represent fractures, and applying ma-
chine learning techniques to rapidly predict which nodes are part of the back-
bone. We have used two supervised learning techniques: random forest and
support vector machines. Once these algorithms have been trained on flow data
from particle simulations, they successfully reduce new DFNs to subnetworks
that preserve crucial flow properties. Our algorithms use topological features
associated with nodes on the graph, as well as a small number of physical fea-
tures describing a fracture’s properties. We consider each node as a point in the
multi-dimensional feature space, and classify it according to whether or not it
belongs to the backbone.

By varying the parameters of our classifiers, we are able to obtain a wide
range of precision and recall values. These yield backbones whose sizes range
from 40% down to 2% of the original network. For reductions as small as 21%
of the original size, the resulting breakthrough curve (BTC) displays good agree-
ment with that of the original network. We therefore obtain subnetworks that
are significantly smaller than the full network, useful for flow simulations, and

44 Conclusions

generated in seconds. By comparison, the computation time needed to extract
the particle backbone is on the order of hours.

In addition to the classification results, the random forest method gives a
set of relative importances for the features used. These importances are deter-
mined by permuting the values of a given feature and observing the effect this
has on classification performance. We have found that features based on global
topological properties of the underlying graph were significantly more impor-
tant than those based on geometry or physical properties of the fractures. This
reinforces previous observations that network connectivity is more fundamental
to determining flow than are geometric or hydraulic properties [19]. Quantita-
tively, the most important of our global topological features is source-to-sink
current flow, which measures how much of a unit of current injected at the
source (representing the inlet plane of the DFN) passes through a given node
of the graph.

Some evidence suggests that if one could in fact generate backbone paths
rather than backbone nodes, results would improve further. We have developed
a two-stage classification method that initially labels fractures at the inlet and
outlet planes, and then successively attempts to propagate fractures labeled as
backbone through the network, thereby forming source-to-sink paths. The ob-
jective of this method is to generate subnetworks that are far closer to the parti-
cle backbone itself, with the training data used not merely to guide the classifier
toward useful network reductions, but rather in the more conventional machine
learning setting of providing ground truth to be reproduced. Our preliminary
results suggest that such a method may considerably boost precision and re-
call simultaneously, generating subnetworks whose BTC closely matches the full
network but whose size is not much larger than the particle backbone.

Finally, we have performed a preliminary study of the problem of predict-
ing fracture propagation under a dynamic graph model. We implemented this
using a basic random geometric graph with growing ellipses. As these ellipses
grow and increasingly overlap with each other, edges get added to the graph.
Once a path is generated through the graph, from a source node to a sink node,
material failure is considered to have occurred. We hope that reduced models of
this kind can help motivate classification methods that predict the failure path
purely from initial geometry, without the need for simulations. This challenge
remains open.

Appendix A

Code Description

All code developed for the 2016–17 Clinic has been placed on the project Git-
Hub site. The code is written in Python, and is primarily organized into jupyter
notebooks.

The following information is reproduced from the readme file for the code
repository on GitHub.

A.1 Dependencies

Math clinic scripts require:

• Python 2.7

• networkx 1.11

• numpy 1.12.1

• scikit-learn 0.18.1

• matplotlib 2.0.0

All tests were performed using those versions, but older or newer version of
the packages might still work.

A.2 Quick start

1. Put the files backbone.txt, connectivity.dat, source.txt, target.txt and vol-
ume.txt in transfer/x{i}/ with a different value of {i} for each network.

46 Code Description

2. Put the file permeability.dat in perms/x{i}/ with a different value of {i} for
each network.

3. Put the file {i}vol_proj.txt in vol_proj/ with a different value of {i} for each
network.

4. Run generate_features.ipynb. Make sure to run the last cell twice, chang-
ing the value of "norm_rank", once for the raw features, and once for the
ranked features.

5. Run main_classification_script.ipynb. Make sure to adjust the training/testing
proportion in part 2, and the output folder and model in part 10.

A.3 Files

A.3.1 main_classification_script.ipynb

Script that loads all features, trains models on them and produces the confusion
matrices and figures.

A.3.2 clinic_functions.py

Function to read and use the features.

A.3.3 generate_features.ipynb

Script to generate all features from the networks files.

A.3.4 PR_plots.ipynb

Generates the precision recall curves.

A.3.5 dynamic_graph.ipynb

Some code aimed to address the dynamic case.

A.3.6 model_selection.ipynb

Contains several model selection tests.

Folders 47

A.3.7 two_stage.ipynb

Two stage method that uses machine learning on nodes for the first stage and
on edges for the second.

A.3.8 2-D_plot_features.ipynb

Generates a 2D plot of features from all graphs

A.3.9 3-D_plot_features.ipynb

Generates a 3D plot of features from all graphs

A.4 Folders

A.4.1 features/

All features for the two_core, current_flow_core and full_graph

A.4.2 norm_rank_features

All ranked features normalized by the number of nodes in its corresponding net-
work.

A.4.3 final_results/

Results for all selected models.

A.4.4 transfer/

Raw data on the 100 networks.

A.4.5 figures/

Compendium of all figures done by model selection tests.

A.4.6 graphpositions/

Pickel objects that store the positions of nodes for consistent visualization.

A.4.7 perms/

Raw permeabilities. Needed to compute some features.

48 Code Description

A.4.8 vol_proj/

Volume projection data.

A.4.9 corr_plots/

Correlation plots for BB-NB sets

A.4.10 archive/

Folder that contains old code. For archival purposes.

Bibliography

[1] M. C. Cacas, E. Ledoux, G. de Marsily, B. Tillie, A. Barbreau, E. Durand,
B. Feuga, and P. Peaudecerf, “Modeling fracture flow with a stochastic
discrete fracture network: calibration and validation: 1. the flow model,”
Water Resources Research, vol. 26, no. 3, pp. 479–489, 1990. [Online].
Available: http://dx.doi.org/10.1029/WR026i003p00479

[2] National Research Council, Rock fractures and fluid flow: contemporary
understanding and applications, U. C. on Fracture Characterization and
F. Flow, Eds. National Academy Press, 1996.

[3] S. Karra, N. Makedonska, H. Viswanathan, S. Painter, and J. Hyman, “Effect
of advective flow in fractures and matrix diffusion on natural gas produc-
tion,” Water Resources Research, vol. 51, pp. 1–12, 2014.

[4] J. Hyman, J. Jiménez-Martínez, H. Viswanathan, J. Carey, M. Porter,
E. Rougier, S. Karra, Q. Kang, L. Frash, L. Chen, Z. Lei, D. O’Malley, and
N. Makedonska, “Understanding hydraulic fracturing: a multi-scale prob-
lem,” Phil. Trans. R. Soc. A, vol. 374, no. 2078, p. 20150426, 2016.

[5] C. Jenkins, A. Chadwick, and S. D. Hovorka, “The state of the art in moni-
toring and verification—ten years on,” Int. J. Greenh. Gas. Con., vol. 40, pp.
312–349, 2015.

[6] J. D. Hyman, S. Karra, N. Makedonska, C. W. Gable, S. L. Painter, and
H. S. Viswanathan, “dfnWorks: A discrete fracture network framework
for modeling subsurface flow and transport,” Computers and Geosciences,
vol. 84, pp. 10–19, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.
cageo.2015.08.001

[7] S. Painter and V. Cvetkovic, “Upscaling discrete fracture network simula-
tions: An alternative to continuum transport models,” Water Resour. Res.,
vol. 41, p. W02002, 2005.

50 Bibliography

[8] S. Painter, V. Cvetkovic, and J.-O. Selroos, “Power-law velocity distributions
in fracture networks: Numerical evidence and implications for tracer trans-
port,” Geophys. Res. Lett., vol. 29, no. 14, 2002.

[9] H. Abelin, I. Neretnieks, S. Tunbrant, and L. Moreno, Final report of the mi-
gration in a single fracture: experimental results and evaluation. Swedish
Nuclear Fuel and Waste Management Company, 1985.

[10] H. Abelin, L. Birgersson, L. Moreno, H. Widén, T. Ågren, and I. Neretnieks,
“A large-scale flow and tracer experiment in granite: 2. results and interpre-
tation,” Water Resour. Res., vol. 27, no. 12, pp. 3119–3135, 1991.

[11] A. Rasmuson and I. Neretnieks, “Radionuclide transport in fast channels in
crystalline rock,” Water Resour. Res., vol. 22, no. 8, pp. 1247–1256, 1986.

[12] J.-R. de Dreuzy, Y. Méheust, and G. Pichot, “Influence of fracture scale het-
erogeneity on the flow properties of three-dimensional discrete fracture
networks,” J. Geophys. Res.-Sol. Ea., vol. 117, no. B11, 2012.

[13] A. Frampton and V. Cvetkovic, “Numerical and analytical modeling of ad-
vective travel times in realistic three-dimensional fracture networks,” Water
Resour. Res., vol. 47, no. 2, 2011.

[14] J. D. Hyman, S. L. Painter, H. Viswanathan, N. Makedonska, and S. Karra,
“Influence of injection mode on transport properties in kilometer-scale
three-dimensional discrete fracture networks,” Water Resour. Res., vol. 51,
no. 9, pp. 7289–7308, 2015.

[15] G. Aldrich, J. Hyman, S. Karra, C. Gable, N. Makedonska, H. Viswanathan,
J. Woodring, and B. Hamann, “Analysis and visualization of discrete frac-
ture networks using a flow topology graph,” IEEE T. Vis. Comput. Gr., 2016.

[16] J. Maillot, P. Davy, R. Le Goc, C. Darcel, and J.-R. De Dreuzy, “Connectiv-
ity, permeability, and channeling in randomly distributed and kinemati-
cally defined discrete fracture network models,” Water Resources Research,
vol. 52, no. 11, pp. 8526–8545, 2016.

[17] M. Valera, Z. Guo, P. Kelly, S. Matz, A. Cantu, A. G. Percus, J. D. Hyman,
G. Srinivasan, and H. S. Viswanathan, “Machine learning for graph-based
representations of three-dimensional discrete fracture networks,” 2017,
submitted.

Bibliography 51

[18] E. Rougier, E. E. Knight, S. T. Broome, A. J. Sussman, and A. Munjiza, “Vali-
dation of a three-dimensional finite-discrete element method using experi-
mental results of the split Hopkinson pressure bar test,” International Jour-
nal of Rock Mechanics and Mining Sciences, vol. 70, pp. 101–108, 2014.

[19] J. D. Hyman, G. Aldrich, H. Viswanathan, N. Makedonska, and S. Karra,
“Fracture size and transmissivity correlations: Implications for trans-
port simulations in sparse three-dimensional discrete fracture networks
following a truncated power law distribution of fracture size,” Water
Resources Research, vol. 52, no. 8, pp. 6472–6489, 2016. [Online]. Available:
http://dx.doi.org/10.1002/2016WR018806

[20] J. N. Goetz, A. Brenning, H. Petschko, and P. Leopold, “Evaluating machine
learning and statistical prediction techniques for landslide susceptibility
modeling,” Computers and Geosciences, vol. 81, pp. 1–11, August 2015.

[21] E. Santiago, J. X. Velasco-Hernández, and M. Romero-Salcedo, “A
methodology for the characterization of flow conductivity through the
identification of communities in samples of fractured rocks,” Expert
Systems With Applications, vol. 41, no. 3, pp. 811–820, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.eswa.2013.08.011

[22] M. K. Mudunuru, S. Karra, N. Makedonska, and T. Chen, “Joint geophysi-
cal and flow inversion to characterize fracture networks in subsurface sys-
tems,” arXiv e-prints, no. 1606.04464, Jun. 2016.

[23] H. O. Ghaffari, M. H. B. Nasseri, and R. P. Young, “Fluid flow complexity in
fracture networks: analysis with graph theory and LBM,” arXiv e-prints, no.
1107.4918, Jul. 2011.

[24] C. A. Andresen, A. Hansen, R. Le Goc, P. Davy, and S. M. Hope,
“Topology of fracture networks,” Frontiers in Physics, vol. 1, no. August,
pp. 1–5, 2013. [Online]. Available: http://www.frontiersin.org/Journal/10.
3389/fphy.2013.00007/full

[25] J. N. Vevatne, E. Rimstad, S. M. Hope, R. Korsnes, and A. Hansen, “Fracture
networks in sea ice,” Frontiers in Physics, vol. 2, pp. 1–8, April 2014.

[26] S. M. Hope, P. Davy, J. Maillot, R. Le Goc, and A. Hansen, “Topological
impact of constrained fracture growth,” Frontiers in Physics, vol. 3, no.
September, pp. 1–10, 2015. [Online]. Available: http://journal.frontiersin.
org/article/10.3389/fphy.2015.00075

52 Bibliography

[27] E. Santiago, M. Romero-Salcedo, J. X. Velasco-Hernández, L. G. Velasquillo,
and J. A. Hernández, “An integrated strategy for analyzing flow conductivity
of fractures in a naturally fractured reservoir using a complex network
metric,” in Advances in Computational Intelligence: 11th Mexican
International Conference on Artificial Intelligence, MICAI 2012, San Luis
Potosí, Mexico, October 27 – November 4, 2012. Revised Selected Papers,
Part II, I. Batyrshin and M. G. Mendoza, Eds. Berlin, Heidelberg:
Springer, 2013, pp. 350–361. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-37798-3_31

[28] E. Santiago, J. X. Velasco-Hernandez, and M. Romero-Salcedo, “A descrip-
tive study of fracture networks in rocks using complex network metrics,”
Computers and Geosciences, vol. 88, pp. 97–114, 2016.

[29] A. Liaw and M. Wiener, “Classification and regression by randomForest,” R
news, vol. 2, no. 3, pp. 18–22, 2002.

[30] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learn-
ing (2nd edition). Springer, 2008.

[31] P. Guerts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Ma-
chine Learning, vol. 63, pp. 3–42, 2006.

[32] A. Prinzie and D. Van den Poel, “Random forests for multiclass classifica-
tion: random multinomial logit,” Expert Systems with Applications, vol. 34,
no. 3, pp. 1721–1732, 2008.

[33] T. Dietterich, “An experimental comparison of three methods for construct-
ing ensembles of decision trees: bagging, boosting, and randomization,”
Machine Learning, pp. 139–157, 2000.

[34] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statis-
tical Learning. Springer, 2013.

[35] T. K. Ho, “A data complexity analysis of comparative advantages of decision
forest constructors,” Pattern Analysis and Applications, pp. 102–112, 2002.

[36] V. Vapnik and A. Lerner, “Pattern recognition using generalized portrait
method,” Automation and Remote Control, vol. 24, pp. 774–780, 1963.

[37] V. Vapnik and A. Y. Chervonenkis, “Theory of pattern recognition: statistical
problems of learning [in russian],” 1974.

Bibliography 53

[38] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[39] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal
margin classifiers,” Proceedings of the fifth annual workshop on Computa-
tional learning theory COLT’92, p. 144, 1992.

[40] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik, “Support vector clus-
tering,” Journal of Machine Learning Research, vol. 2, pp. 125–137, 2001.

[41] LDRD-DR, “Dynamic graph representation of fracture propagation pro-
cesses: basic principle,” October 13, 2016, presentation slides.

[42] E. Estrada and M. Sheerin, “Random neighborhood graphs as models of
fracture networks on rocks: structural and dynamical analysis,” arXiv e-
prints, no. 1607.06678, 2017.

[43] A. A. Hagberg, D. A. Schult, and P. Swart, “Exploring network structure, dy-
namics, and function using networkx,” in Proceedings of the 7th Python in
Science Conferences (SciPy 2008), vol. 2008, 2008, pp. 11–16.

[44] J. Anthonisse, “The rush in a directed graph,” Stichting Mathematisch
Centrum. Mathematische Besliskunde, no. BN 9/71, pp. 1–10, jan 1971.
[Online]. Available: https://www.narcis.nl/publication/RecordID/oai:cwi.
nl:9791

[45] L. C. Freeman, “A set of measures of centrality based on betweenness,” So-
ciometry, vol. 40, no. 1, pp. 35–41, 1977.

[46] U. Brandes and D. Fleischer, “Centrality measures based on current flow,”
Proc. 22nd Symp. Theoretical Aspects of Computer Science, vol. 3404, pp.
533–544, 2005.

[47] M. Newman, “A measure of betweenness centrality based on random
walks,” Social Networks, pp. 39–54, 2005.

[48] S. Russell, Artificial intelligence : a modern approach. Upper Saddle River,
NJ: Prentice Hall, 2010.

[49] T. K. Ho, “Random decision forests,” Proceedings of the 3rd International
Conference on Document Analysis and Recognition, vol. 14-16, pp. 278–282,
August 1995.

54 Bibliography

[50] ——, “The random subspace method for constructing decision forests,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20,
no. 8, pp. 832–844, 1998.

[51] G. Aldrich, J. D. Hyman, S. Karra, C. W. Gable, N. Makedonska,
H. Viswanathan, J. Woodring, and B. Hamann, “Analysis and visualization
of discrete fracture networks using a flow topology graph,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 22, no. X, pp. 1–15, 2016.

[52] D. O’Malley, personal communication, 2017.

