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Abstract. We introduce the Networked Resource Game, a graphical
game where players’ actions are a set of resources that they can apply
over links in a graph to form partnerships that yield rewards. This in-
troduces a new constraint on actions over multiple links. We investigate
several network formation algorithms and find bilateral coalition-proof
equilibria for these games. We analyze the outcomes in terms of social
welfare and inequality, as measured by the Gini coefficient, and show
how graph formation affects these aspects of a networked economy.

1 Introduction

Graphical games that model social phenomena have been an emerging research
area applied to group consensus making, networked bargaining and trading
strategies. Here, we investigate the interactions of a society where actions are
resource-bounded, i.e., agents have limits on how they are able to act across their
network. We model the notion that people have a finite number of resources and
their network affects how those resources can be coupled with others’ resources
in order to produce rewards. One example of this is in professional networks
where agents need to form partnerships and the payoffs of the partnerships are
a function of the capabilities that each bring to the table.

In this paper, we introduce the Networked Resource Game, and study how
the structure of the network and its dynamics affect social welfare and inequal-
ity, measured by the Gini coefficient, of the resulting equilibria. For network
formation, we utilize Erdos-Renyi [13] and preferential attachment [1] models
and introduce several new algorithms as well. We introduce an algorithm to find
bilateral coalition-proof equilibria as Nash equilibria do not lead to reasonable
outcomes in this domain. In this context, we study how the various algorithms
affect social welfare and inequality and the impact of network properties on
performance.

2 Related Work

Graphical games [9] provide compact representation of multi-agent interaction
when players’ payoffs depend only on actions of agents in their neighborhood.
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It is known that finding Nash equilibria for graphical games is difficult even for
restricted structures [4]. Local heuristic techniques are commonly employed [7,
3]. A seminal work in using agent-based simulation to study human interaction
was Axelrod’s tournament for Prisoner’s Dilemma [2]. Prisoner’s Dilemma has
also been studied in a graphical setting with simulated agents [11]. Dynamic
networked games based on the Ultimatum Game have also been investigated [10]
Research on identification and development of networks includes analyzing event-
driven growth [14] and inferring social situations by interaction geometry [6].
Other work has described algorithmic methods to discover temporal patterns
in networked interaction data [8]. Researchers have formulated efficient solution
methods for games with special structures, such as limited degree of interactions
between players linked in a network, or limited influence of their action choices
on overall payoffs for all players [12, 15]. In terms of these work, our model takes
the networked interaction into a completely different domain, as we focus on
the influence of the structure and topology of the network, on the dynamics of
resource allocation in the network.

3 Networked Resource Game Model

The Networked Resource Game is characterized by a set of N players {pi}Ni=1,
a card distribution C, a graph G and a reward function R. Each player pi has
a set of cards Ci = {ci,1, . . . , ci,NC

i
} where NC

i is the number of cards for that
player. The cards represent a skill or resource that the player can play on a
link. Each card has a type which comes from a predetermined type set T , i.e.,
ci,j ∈ T ∀i, j. For simplicity, given a discrete type set, we can think of the type
as a color and that each card has a color. The graph is a set of edges over N
nodes, i.e., G = {eij} where eij refers to a link between players pi and pj . It is
possible that some players have no links associated with them.

The graph specifies the links over which players may play their cards. Here, we
include the restriction that a player may play at most one card on a link. Thus,
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Fig. 1. The Networked Resource Game
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the number of cards indicate a players ability to have multiple simultaneous
partnerships. It is possible that a player has more links than cards and also
more cards than links. Based on what cards are played on a link, each player
gets a reward specified by the function R(a, ā) which is the reward to a player
for performing action a on a link where the other player performed action ā. The
action space for player pi on link eij is Aij = Ci ∪ 0, where 0 indicates that the
player chose not to play one of their cards on that link.

The reward function has (|T |+ 1)2 inputs representing every combination of
actions, i.e., all card types and not playing a card, for each player. The Networked
Resource Game is similar to a standard graphical game, however, the action
space has restrictions over multiple links whereas in standard graphical games,
actions on link are independent. Here, we have the restriction that ∪jaij ⊂ Ci

where aij is player pi’s action on link eij . This states that a player cannot play
more cards than they have, which introduces a coupling over links.

An illustration of the game is shown in Figure 1. It shows a game involving
three card types (green, red and yellow). One can imagine that these cards
represent assets of value in an economy that yield different outcomes to each
contributor in partnerships. For example, green could represent capital, red could
represent skilled labor and yellow could represent unskilled labor.

4 Network Formation and Finding Equilibria

Network Formation. Here, we describe the algorithms that we use to create
our social network graphs and find equilibria for a given graph. Network forma-
tion is determined by various growth processes that describe how a link is added
to an existing graph. We describe four such models:

– Erdos-Renyi (ER): This is a baseline process where we add a link chosen
uniformly from those links that do not already exist in the graph.

– Preferential Attachment (PA): If the input graph has zero or one link,
we use the ER process. Thus, the network is seeded with two random links.
After this, to add a link, we choose a node randomly and consider the links
it could add to the graph, i.e., the set of links connected to the chosen node
that are not already in the graph. Each such link is given a weight equal to
the degree of the target node it connects to, and a link is chosen in proportion
to these weights. Preferential attachment models have been proposed as a
model that reflects how social networks are formed, particularly online.

– Most Free Cards (MFC): Each node is given an MFC score: the number
of cards it has minus the number of links it has, i.e., a measure of the number
of free cards for that player. The process selects a node uniformly from those
that have the highest MFC score. This node then chooses a link uniformly
from other nodes that have the highest MFC score. When the MFC scores
are all zero, the algorithm becomes ER.

– Poor-to-Rich Chain (PRC): We first associate each player with a wealth
calculated as the sum of the value of their cards, where the value of each
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card is the maximum reward obtainable from applying that card:

wi =
∑
c∈Ci

max
a∈T∪0

R(c, a)

We first create a chain, where agents are ordered by wealth with ties broken
randomly. Then, a player chosen uniformly from those with the highest MFC
score adds a link. The target node is the closest node in the chain with a free
card, i.e., an MFC score greater than zero. Again, ties are broken randomly.
When all MFC scores are zero, the algorithm becomes ER.

The various processes described above capture various degrees of control
that players may have over the network on which they play. In the ER and
PA models, players have no control over links. One may consider PA as player
driven, but the game properties (card, rewards) do not affect the formation of
the links so the processes are not strategic. The MFC model is a decentralized
strategic model where agents have partial information about the state of the
world, namely the number of cards and links for each player. The PRC model
is a centralized model that takes game parameters into account when making
the graph and incorporates a social structure onto the world where people with
similar wealth are more likely to be connected to each other.

Finding Equilibria. Given a game structure (cards, rewards, and a graph),
we would like to determine an appropriate outcome. Nash equilibria are often
considered as a solution concept for games and graphical games as well, however,
it has issues in the context of the Networked Resource Game. Consider the simple
example of four players in a fully connected graph where each player has one
card. Two players have a single red card and two players have a single green
card. Let the rewards for having two cards with same color on a link be 100 for
each player, two cards with different colors on the same link be 10, and all links
with one or zero links be worth nothing. Consider the situation where we have
two red-green links. Each player receives 10 and has no incentive to deviate, i.e,
move their one card to another link, because that would cause a loss of 10, even
though each player has a link to a player with the same color card.

Thus, in the Networked Resource Game, Nash equilibria lead to artificially
poorer results than one would expect if one was playing this game assuming
players could communicate over the links that they have. Thus, we consider
equilibria where players can make bilateral deviations. An equilibrium in this
context is a state where no player would choose to make a unilateral deviation
and no two players would choose to make a bilateral deviation. We use the
procedure below to discover such equilibria for a given game structure.

Each player first assigns cards randomly to available links. We then perform
action updates in a series of rounds. In each round, we order the set of links. For
each link, the players iterate back and forth on card choices for the link. On the
first iteration, the first player assumes that the other player plays one of their
cards, chosen from all cards that player has, i.e., not necessarily the card being
played on the link currently. The first player then plays their best response on all
links given the cards that are played on all the links that they have. In the second
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iteration and all following iterations, the acting player chooses their best response
to the cards that are being played on their link. This procedure continues until
an equilibrium is reached for that link or we reach a preset limit of interactions.
We continue this procedure for all links in each round. The procedure terminates,
when at the end of a round, the joint actions are the same as the joint actions
in the previous round. The procedure continues for a preset number of rounds.
Finding equilibria in graphical games is a challenging problem. The algorithm
presented is sound in that if it terminates before reaching the preset number of
rounds, we know that the resulting joint action is an equilibrium for the game,
however, we may not find all equilibria.

Abstract algorithm FINDING-EQUILIBRIA for computing bilateral coalition-
proof equilibria

Algorithm FINDING-EQUILIBRIA
Inputs: one game structure(cards,rewards and a graph)

Outputs: bilateral coalition-proof equilibria

Each player first assigns cards randomly to available links

equilibria ← 0

for round ← 1 to n1

do order the set of links
num ← 1

repeat
(1)one player Pi assumes that the other player Pj

which links with Pi plays one of its cards

(2)Pi plays their best response on all links given the

cards that are played on all the links that they have

(3)Pj chooses their best response to the cards

that are being played on their link

(4)num ← num + 1
until an equilibrium is reached for that link

or num = n2
if the joint actions = joint actions in the previous round
then return equilibria
else return -1

5 Experiments

We considered societies of 12 players. In each scenario, each player was given
a number of cards chosen uniformly from one to five: |Ci| ∼ U(1, 5). We had
three card types: green, red, and yellow. Card colors were selected indepen-
dently for each card using the following probabilities: P ([green red yellow]) =
[0.20 0.40 0.40]. There were two methods for selecting reward functions. In the
baseline method, each reward for links with two cards on them were chosen ran-
domly: R(c1, c2) ∼ U(1, 1000) for c1, c2 ∈ T . Links with one or zero cards gave



6 Zhuoshu Li1, Yu-Han Chang2, and Rajiv Maheswaran2

zero reward to both players. In the alternate method, the reward for a green-
green link is replaced with 100 times the value of the maximum reward of all
the rewards in the baseline method. The latter is to investigate a society where
there is a significantly outlying reward available to a small number of people
if they make the right connections. It is for this reason that the green cards
occur at lower likelihood than the others. For a given game card and reward
structure, we would run our various network formation algorithms and generate
graphs of increasing size. Each network formation algorithm was run 10 times,
thus generating 10 graphs with the same number of edges for each process. For
each game structure (cards, rewards and graph) that resulted, we would find the
set of equilibria. For each graph, the equilibrium-finding algorithm was run 40
times and each run was ended if the algorithm didn’t terminate in 15 rounds.

For any single equilibrium, we calculated the social welfare as the sum of all
the rewards to all players and the Gini coefficient, a measure of income dispar-
ity [5, 16]. The Gini coefficient measures the gap in the cumulative distribution
function (CDF) of total share of wealth as a function of percentile income be-
tween a uniformly wealthy society which would have a linear CDF and the CDF
of the society being investigated. Larger Gini coefficients indicate greater income
disparity. For each game structure, we calculated an associated social welfare
with the weighted average of social welfares of equilibria of that game structure,
where weights were the number of times the equilibrium was discovered. We
calculated associated Gini coefficients for each game structure similarly.

The Gini coefficient is normalized between zero (everyone has equal wealth)
and one (one person has all the wealth), but social welfare for each game is a
function of the reward matrix. We first solve the following integer program:

max
∑

(c1,c2)∈C2

nc1,c2 (R(c1, c2) + R(c2, c1))

such that
∑
c̃∈T

nc,c̃ ≤ nc ∀c ∈ T, nc,c̃ ≥ 0, ∀c, c̃

This considers all possible combinations of cards on a link (c1, c2) ∈ C2 and
maximizes the reward obtained for having a particular number of card combina-
tions on the graph (nc1,c2) with the rewards obtained for that card combination
(R(c1, c2) + R(c2, c1)), such that the number of card combinations of the graph
does not violate the card constraints, i.e., the number of cards of a particular
type (nc) and non-negativity of the number of combinations. This yields an up-
per bound on the social welfare because it allows multiple links between players
and links between cards of the same player. We use this to normalize social
welfares across different card and reward structures.

6 Results

Figure 2 shows how social welfare changes as a function of network formation
algorithm and graph size. We did not show the error bars for clarity in presen-
tation but we discuss significance below. We see that social welfare improves as
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the society gets more connected for all algorithms. MFC and PRC are signif-
icantly better than ER and PA. ER is slightly better than PA but the result
is not statistically significant. These results hold in both reward scenarios. For
baseline rewards, MFC and PRC both reach about 0.9 efficiency in social wel-
fare at about 18 links and do not improve much beyond that. We also see the
impact of network structure as the 28-link ER and PA graphs are less efficient
that MFC and PRC graphs that are half the size. We noticed that ER and PA
graphs are not easy to reach equilibria when the graph is larger than 30 links.
For alternate rewards, the efficiency is significantly smaller than the baseline
word, this could be the result of two factors: there are green-green links that are
not being formed, and our normalization could be overcounting the number of
potential green-green links.

Figure 3(a) shows how Gini coefficients change as a function of network
formation algorithm and graph size. Inequality decreases as the network sizes
increase. For the baseline reward structure, MFC, PRC and ER are significantly
better than PA. The key change is that ER has jumped from the PA equivalence
class to the MFC/PRC equivalence class. We note that the Gini coefficient is
relatively flat after about 18 links. For the alternate reward structure, all the
algorithms are in the same equivalence class. This is because once a few green-
green links are formed, it is difficult to change the inequality of the world.

We then investigated the number of wasted cards in equilibrium, i.e., the
number of cards that did not yield any reward to the player holding it. Fig-
ure 3(b) shows the number of wasted cards as a percentage of the total number
of cards in a society. We see that wasted cards explains a lot of the phenomena
in social welfare. The MFC and PRC algorithm, which has an MFC component,
waste the fewest cards because that is part of their process. The others form
links that are not as useful in allowing players to use their cards. ER performs
slightly better that PA because it does not overload particular users with large
numbers of links. Thus as fewer cards are wasted, social welfare improves. This
similarly explains the Gini coefficient because as more cards are used, we have
fewer users with low or no rewards. Nevertheless, it is interesting to note that

BASELINE REWARDS ALTERNATE REWARDS

Fig. 2. Social Welfare by Algorithm and Graph Size
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Fig. 3. (a) Gini Coefficient and (b) Wasted Card Percentage by Algorithm, Graph Size

while ER wastes more cards than MFC and PRC, it does not perform worse in
terms of inequality. This remains an open question. Interestingly, with half the
possible links (33), we still have about 10% of cards being wasted.

Fig. 4. Social Welfare and Gini Coefficient by Average and Variance of Degree for
Baseline Rewards

We also looked at the impact of network properties on outcomes. Figure 5
shows social welfare and Gini coefficient as a function of the average and variance
of the degrees of the nodes in the graph. Clearly, this will depend on the card
and reward structure. In our case, both average and variance of degree showed
similar curves in increasing social welfare and decreasing inequality. The inequal-
ity curves are similar in both reward structures and the social welfare curves are
close to the best performing algorithms as a function of graph size. One poten-
tial future direction is using these properties as part of the network formation
process because they may be more easily estimated than the requirements of the
processes we presented. We also plan on investigating games where more than
two players can collaborate. It is also a challenge to investigate appropriate out-
comes for graphs as the scale of the society grows as equilibrium discovery will
become more computationally demanding. We believe the Networked Resource
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Fig. 5. Social Welfare and Gini Coefficient by Average and Variance of Degree for
Alternate Rewards

Game is a good starting point for modeling and investigating the complexities
and design of economies of resource-bounded and socially networked agents.
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