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Abstract

This paper introduces new techniques to obtain a closed-form rank-by-rank char-

acterization of the equilibrium distribution of wealth in a model in which finitely lived

households face uninsurable idiosyncratic investment risk. A central result is that the

extent of inequality is determined entirely by two factors. The first factor, house-

hold exposure to idiosyncratic investment risk, increases inequality. The second factor,

cross-sectional mean reversion of household wealth, decreases inequality. We show that

economic mobility is decreasing in inequality and increasing in mean reversion, a result

that is consistent with recent empirical observations about the geographic variation

in mobility that exists both domestically and internationally. Our approach allows us

to examine the implications of increased market completeness in the form of a risk-

sharing subgroup of households. We show that a risk-sharing subgroup rises or falls in

the equilibrium wealth distribution depending on the level of inequality, and that its

presence raises welfare and the rate of wealth accumulation for all households in the

economy.
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1 Introduction

A large collection of recent research has described the substantial concentration of income

and wealth that exists in many different countries around the world. According to Davies

et al. (2011) and Saez and Zucman (2014), the wealthiest 1% of households in the United

States hold approximately 40% of total wealth, with similar numbers observed in other

countries as well. Atkinson et al. (2011) show that the wealthiest 1% of households in the

United States earn nearly 25% of total income, and that many other countries have similarly

right-skewed distributions of income.1 Although right-skewed distributions of income and

wealth have been the reality for generations, the extent of such skewness has varied markedly

over time and across countries.

In order to explore how the economic environment and policy influence mobility and

the distributions of income and wealth, we develop a model in which finitely lived hetero-

geneous households face uninsurable idiosyncratic investment risk and have a joy-of-giving

bequest motive. Using a novel rank-based approach to wealth distribution, we are able to

obtain a closed-form rank-by-rank characterization of the entire equilibrium distribution of

wealth in this setting. According to this characterization, the extent of economic inequality

is determined entirely by two factors—the reversion rates of household wealth (a measure of

cross-sectional mean reversion) and households’ exposure to idiosyncratic investment risk.

Mean reversion in our model is determined by households’ finite lifetimes and the lump sum

government transfers paid to all newborn households. In the steady-state equilibrium, in-

equality is increasing in household exposure to investment risk and decreasing in the reversion

rates.

In addition to inequality, our solution techniques also allow for a detailed analysis of eco-

nomic mobility. We show analytically that mobility is decreasing in inequality and increasing

in the reversion rates, a result that is broadly consistent with both the “Great Gatsby curve”

documented across countries (Krueger, 2012; Corak, 2013) and the geographical variation in

mobility documented within the U.S. (Chetty et al., 2014). We also consider the implications

of increased market completeness in the form of a subgroup of households that can share

their individual-specific idiosyncratic investment risk with each other. Even in the absence

1Dı́az-Giménez et al. (2002) provide further analysis of the distribution of income in the United States.
Meanwhile, Piketty (2003), Piketty and Saez (2003), Atkinson (2005), Saez and Veall (2005), and Moriguchi
and Saez (2008) present detailed analyses of income inequality in France, the United States, the United
Kingdom, Canada, and Japan, respectively.
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of changes in investment and consumption in response to their increased investment oppor-

tunities, the households in a risk-sharing subgroup achieve both faster wealth accumulation

and less volatile returns. In equilibrium, this faster wealth accumulation spreads to those

households outside the risk-sharing subgroup via larger lump sum transfers, thus raising the

welfare of all households in the economy.

Many of the first attempts to account for the right-skewness of the distribution of wealth

assumed that households face uninsurable idiosyncratic labor income risk. While this ap-

proach has had some empirical success, many of these so-called Bewley models fail to generate

high Gini coefficients and heavily right-skewed wealth distributions.2 Another explanation

for right-skewed distributions of wealth involves uninsurable investment risk and the multi-

plicative process of wealth accumulation. The assumption that households face idiosyncratic

investment risk was first introduced into a macroeconomic model by Angeletos and Cal-

vet (2006) and Angeletos (2007), and has since been incorporated into models of wealth

distribution such as Benhabib and Zhu (2009) and Benhabib et al. (2011).

The primary motivation for the inclusion of uninsurable investment risk is empirical. In-

deed, ample evidence demonstrates that both private business equity and principal residence

ownership are important sources of idiosyncratic investment risk for individuals and house-

holds. According to calculations by Bertaut and Starr-McCluer (2002) and Wolff (2006)

using data from the 2001 Survey of Consumer Finances (SCF), private business equity and

the gross value of principal residences make up, respectively, 27% and 28.2% of total U.S.

household wealth. These investments are highly volatile, with a standard deviation for the

return of housing roughly equal to 15% according to Case and Shiller (1989) and Flavin and

Yamashita (2002), and an even larger volatility for the capital gains and earnings on private

equity as reported by Moskowitz and Vissing-Jorgensen (2002). Taken together, these facts

imply that a substantial fraction of risk associated with the returns to household wealth is

not easily diversified away.

This paper joins a growing literature that embraces these empirical insights and incor-

porates uninsurable investment risk in a macroeconomic setting. In particular, our setup

shares much in common with the subset of this literature focused on wealth distribution,

2Ljungqvist and Sargent (2004) and Cagetti and De Nardi (2008) provide both a discussion and survey
of this extensive literature. Some authors have in fact successfully generated right-skewness in this setting
by expanding the setup to include extra features such as borrowing constraints, preferences for bequests, and
entrepreneurship (Cagetti and De Nardi (2006), De Nardi (2004), and Quadrini (2000)) or heterogeneous
and fluctuating discount rates (Krussel and Smith (1998) and Hendricks (2007)).
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such as Benhabib et al. (2011, 2014). Like these papers, our model generates an equilibrium

distribution of wealth that is right-skewed and has a Pareto-like shape that matches what is

observed in real-world economies.

In addition to describing the distribution of wealth, the results in this paper extend

the literature in three directions. First, we adopt the general, nonparametric approach to

rank-based systems introduced by Fernholz (2016) and use this to achieve a simple analytic

characterization of equilibrium in our model. In most cases, the technical challenges posed by

uninsurable investment risk and the multiplicative process of wealth accumulation essentially

preclude a closed-form characterization of the distribution of wealth. Even in those cases

where an analytic solution is possible, the complexity of such a solution often makes it difficult

to interpret or understand. The equilibrium characterization in our setup, by contrast,

is both tractable and flexible. In it, there are just two factors—households’ exposure to

idiosyncratic investment risk and the reversion rates of household wealth—that determine

the entire distribution of wealth and inequality according to the relationship3

inequality =
household exposure to idiosyncratic investment risk

reversion rates of household wealth
. (1.1)

As this equation shows, equilibrium inequality is increasing in exposure to investment risk

and decreasing in cross-sectional mean reversion (measured by the reversion rates).

This paper’s second contribution is a detailed description of the extent of mobility in the

economy. In our setup, we model explicitly heterogeneous households whose wealth dynamics

over time are traced individually. One natural measure of economic mobility in this setting

is the expected time before one household overtakes another household in terms of wealth

holdings. After all, if one household overtakes another in this way, then that household has

improved its economic standing, which is the usual measure of mobility. A central result

in this paper characterizes the expected time before each such improvement in household

economic standing occurs. In particular, we show that this measure of mobility is entirely

determined by two factors according to the relationship

mobility =
reversion rates of household wealth

inequality
. (1.2)

3The reversion rates in our setup are closely related to the concept of redistributive mechanisms from
Fernholz and Fernholz (2014).
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Much like inequality, then, equilibrium mobility is decreasing in cross-sectional mean rever-

sion and increasing in inequality.

In addition to being supported by the empirical results of Corak (2013) and Chetty et al.

(2014), these theoretical predictions provide an interpretation of the variation in mobility

that has been observed across different regions, countries, and time periods. For instance,

according to our results, the substantial variation in intergenerational income mobility across

different geographical areas of the United States documented by Chetty et al. (2014) should

reflect a similar geographic variation in inequality and reversion rates of household wealth.

A similar conclusion applies to the variation in mobility observed across countries by Corak

(2013). Ultimately, it is likely that there are many different factors, both related and unre-

lated to policy, that explain such variation in inequality and mean reversion across regions

and countries. Future empirical research that attempts to distinguish among these factors

should yield useful insight.

Our third contribution is to examine the implications for the equilibrium distribution of

wealth and welfare of increased market completeness. In particular, we consider the presence

of a subgroup of households that can share their individual-specific idiosyncratic risk with

each other and show that this has two separate effects. First, the households in the subgroup

are able to achieve less volatile returns and faster wealth accumulation simply by diversifying

across different risky assets. Second, because the households in the subgroup have better

risky-asset investment options, they invest more aggressively in higher-return risky assets

and thus achieve even faster wealth accumulation. This faster wealth accumulation spreads

to those households outside the risk-sharing subgroup as well since it increases the size of

lump sum transfers to newborn households in equilibrium. As a consequence, the presence of

a risk-sharing subgroup of households leads to faster wealth accumulation and higher welfare

for all households in the economy. In terms of the equilibrium distribution of wealth, we

show that the more inequality there is, the higher the risk-sharing subgroup of households

rises in the distribution.

The rest of the paper is organized as follows. Section 2 introduces the general, rank-based

solution techniques that we use to obtain our results. Section 3 presents the main model

and the results about the distribution of wealth, economic mobility, and the implications

of risk-sharing subgroups of households. In Section 4, we parameterize the model to match

the most recent U.S. wealth distribution data from 2012 and generate numerical results for
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intergenerational mobility, rank correlations, and the dynamic behavior of a risk-sharing

subgroup. Section 5 concludes. All proofs can be found in Appendix A.

2 Preliminaries: A Nonparametric Approach toWealth

Distribution

Before we present and solve our theoretical model of wealth distribution, it is useful to

present some basic preliminary results that motivate our approach to solving the theoretical

model.

Consider an economy that is populated by N > 1 households. Time is continuous and de-

noted by t ∈ [ 0,∞), and uncertainty in this economy is represented by a filtered probability

space (Ω,F ,Ft, P ). Let B(t) = (B1(t), . . . , BM(t)), t ∈ [0,∞), be an M -dimensional Brow-

nian motion defined on the probability space, with M ≥ N . We assume that all stochastic

processes are adapted to {Ft; t ∈ [0,∞)}, the augmented filtration generated by B.

The total wealth of each household i = 1, . . . , N in this economy is given by the process

wi. Each of these wealth processes evolves according to the stochastic differential equation

d logwi(t) = µi(t) dt+
M∑
z=1

δiz(t) dBz(t), (2.1)

where µi and δiz, z = 1, . . . ,M , are measurable and adapted processes. The growth rates

and volatilities µi and δiz are general and can vary over time and across different household

characteristics.4 Indeed, equation (2.1) requires only that the wealth processes for the banks

in the economy be continuous semimartingales, which represent a broad class of stochastic

processes (for a detailed discussion, see Karatzas and Shreve, 1991). Indeed, the martingale

representation theorem (Nielsen, 1999) implies that any plausible continuous wealth process

can be written in the nonparametric form of equation 2.1.5

4These growth rates and volatilities must only satisfy a few basic regularity conditions that are discussed
in detail by Fernholz (2016).

5This is even true of wealth processes that feature periodic discontinuous jumps, as we demonstrate in
the next section.

6



It is useful to describe the dynamics of total wealth for all households in the economy,

which we denote by w(t) = w1(t) + · · · + wN(t). In order to do so, we first characterize the

covariance of wealth across different households over time. For all i, j = 1, . . . , N , let the

covariance process ρij be given by

ρij(t) =
M∑
z=1

δiz(t)δjz(t). (2.2)

Applying Itô’s Lemma to equation (2.1), Fernholz (2016) shows that the dynamics of the

process for total wealth in the economy w are given by

d logw(t) = µ(t) dt+
N∑
i=1

M∑
z=1

θi(t)δiz(t) dBz(t), a.s., (2.3)

where

µ(t) =
N∑
i=1

θi(t)µi(t) +
1

2

(
N∑
i=1

θi(t)ρii(t)−
N∑

i,j=1

θi(t)θj(t)ρij(t)

)
(2.4)

and, for all i = 1, . . . , N , θi(t) is the share of total wealth held by household i at time t,

θi(t) =
wi(t)

w(t)
. (2.5)

In order to characterize the stable distribution of wealth, it is necessary to consider

the dynamics of household wealth by rank. To accomplish this, we introduce notation for

household rank based on total wealth holdings. For k = 1, . . . , N , let w(k)(t) represent the

wealth held by the k-th wealthiest household in the economy at time t, so that

max(w1(t), . . . , wN(t)) = w(1)(t) ≥ w(2)(t) ≥ · · · ≥ w(N)(t) = min(w1(t), . . . , wN(t)). (2.6)

Next, let θ(k)(t) be the share of total wealth held by the k-th wealthiest household at time

t, so that

θ(k)(t) =
w(k)(t)

w(t)
, (2.7)

for k = 1, . . . , N .

The next step is to describe the dynamics of the ranked household wealth processes w(k)

and ranked wealth share processes θ(k), k = 1, . . . , N . It is necessary to introduce the notion
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of a local time in order to describe these dynamics.6 For any continuous process x, the local

time at 0 for x is the process Λx defined by

Λx(t) =
1

2

(
|x(t)| − |x(0)| −

∫ t

0

sgn(x(s)) dx(s)

)
. (2.8)

As detailed by Karatzas and Shreve (1991), the local time for x measures the amount of

time the process x spends near zero. To be able to link household rank to household index,

let pt be the random permutation of {1, . . . , N} such that for 1 ≤ i, k ≤ N ,

pt(k) = i if w(k)(t) = wi(t). (2.9)

This definition implies that pt(k) = i whenever household i is the k-th wealthiest household

in the economy.

It is not difficult to show that for all k = 1, . . . , N , the dynamics of the ranked wealth

processes w(k) and ranked wealth share processes θ(k) are given by7,8

d logw(k)(t) = d logwpt(k)(t) +
1

2
dΛlogw(k)−logw(k+1)

(t)− 1

2
dΛlogw(k−1)−logw(k)

(t), a.s., (2.10)

and

d log θ(k)(t) = d log θpt(k)(t) +
1

2
dΛlog θ(k)−log θ(k+1)

(t)− 1

2
dΛlog θ(k−1)−log θ(k)(t), a.s. (2.11)

A formal derivation of these equations together with a brief discussion of their intuition is

provided by Fernholz (2016). Using equations (2.1) and (2.3) and the definition of θi(t), we

have that for all i = 1, . . . , N ,

d log θi(t) = µi(t) dt+
M∑
z=1

δiz(t) dBz(t)− µ(t) dt−
N∑
i=1

M∑
z=1

θi(t)δiz(t) dBz(t). (2.12)

6Note that we cannot simply apply Itô’s Lemma in this case since the max and min functions from
equation (2.6) are not differentiable.

7We shall use the convention that Λlogw(0)−logw(1)
(t) = Λlogw(N)−logw(N+1)

(t) = 0 throughout this paper.
8For brevity, we write dxpt(k)(t) to refer to the process

∑N
i=1 1{i=pt(k)}dxi(t) throughout this paper.
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According to equation (2.11), then, it follows that

d log θ(k)(t) =
(
µpt(k)(t)− µ(t)

)
dt+

M∑
z=1

δpt(k)z(t) dBz(t)−
N∑
i=1

M∑
z=1

θi(t)δiz(t) dBz(t)

+
1

2
dΛlog θ(k)−log θ(k+1)

(t)− 1

2
dΛlog θ(k−1)−log θ(k)(t),

(2.13)

a.s, for all k = 1, . . . , N . Equation (2.13), in turn, implies that the process log θ(k)− log θ(k+1)

satisfies, a.s., for all k = 1, . . . , N − 1,

d
(
log θ(k)(t)− log θ(k+1)(t)

)
=
(
µpt(k)(t)− µpt(k+1)(t)

)
dt+ dΛlog θ(k)−log θ(k+1)

(t)

− 1

2
dΛlog θ(k−1)−log θ(k)(t)−

1

2
dΛlog θ(k+1)−log θ(k+2)

(t)

+
M∑
z=1

(
δpt(k)z(t)− δpt(k+1)z(t)

)
dBz(t).

(2.14)

Let αk equal the time-averaged limit of the expected growth rate of wealth for the k-th

wealthiest household relative to the expected growth rate of total wealth in the economy, so

that

αk = lim
T→∞

1

T

∫ T

0

(
µpt(k)(t)− µ(t)

)
dt, (2.15)

for k = 1, . . . , N . The relative growth rates αk are a rough measure of the rate at which

household wealth reverts to the mean. In a similar manner, we wish to define the time-

averaged limit of the volatility of the process log θ(k)− log θ(k+1), which measures the relative

wealth holdings of adjacent households in the distribution of wealth. For all k = 1, . . . , N−1,

let σk be given by

σ2
k = lim

T→∞

1

T

∫ T

0

M∑
z=1

(
δpt(k)z(t)− δpt(k+1)z(t)

)2
dt. (2.16)

The relative growth rates αk together with the volatilities σk entirely determine the shape

of the stable distribution of wealth in this economy. Finally, for all k = 1, . . . , N , let

κk = lim
T→∞

1

T
Λlog θ(k)−log θ(k+1)

(T ). (2.17)

Let κ0 = 0, as well. As shown by Fernholz (2016), the parameters αk and κk are related by
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αk − αk+1 = 1
2
κk−1 − κk +

1
2
κk+1, for all k = 1, . . . , N − 1. Note that we assume that the

limits in equations (2.15)-(2.17) exist.

The distribution of wealth in this economy is stable if the limits in equations (2.15)-(2.17)

all exist and if the limits in equations (2.16)-(2.17) are positive constants. In this paper,

we shall only consider and apply this section’s results to economies that are stable.9 It is

important to emphasize that stability of the distribution of wealth is a weaker condition

than stationarity of the distribution of wealth.10

The stable version of the process log θ(k) − log θ(k+1) is the process log θ̂(k) − log θ̂(k+1)

defined by

d
(
log θ̂(k)(t)− log θ̂(k+1)(t)

)
= −κk dt+ dΛlog θ̂(k)−log θ̂(k+1)

(t) + σk dB(t), (2.18)

for all k = 1, . . . , N − 1.11 The stable version of log θ(k) − log θ(k+1) replaces all of the

processes from the right-hand side of equation (2.14) with their time-averaged limits, with

the exception of the local time process Λlog θ(k)−log θ(k+1)
. By considering the stable version of

these relative wealth holdings processes, we are able to obtain a simple characterization of

the distribution of wealth.

Theorem 2.1. There is a stable distribution of wealth in this economy if and only if α1 +

· · · + αk < 0, for k = 1, . . . , N − 1. Furthermore, if there is a stable distribution of wealth,

then for k = 1, . . . , N − 1, this distribution satisfies

lim
T→∞

1

T

∫ T

0

(
log θ̂(k)(t)− log θ̂(k+1)(t)

)
dt =

σ2
k

−4(α1 + · · ·+ αk)
, a.s. (2.19)

We refer the reader to Fernholz (2016) for a proof of Theorem 2.1.12 Despite this section’s

general, nonparametric setup, this theorem provides an analytic rank-by-rank characteriza-

tion of the entire stable distribution of wealth. The theorem implies that practically all

theoretical models of wealth distribution can be solved in full detail by measuring the rank-

based relative growth rates αk and volatilities σk of those models. Both parameters vary

9In fact, the setup we consider in this paper yields a stationary wealth distribution, which is a stronger
condition than stability.

10This section’s methods can also be applied to some unstable economic scenarios (see Fernholz, 2016).
11For each k = 1, . . . , N , equation (2.18) implicitly defines another Brownian motion B(t), t ∈ [0,∞).

These Brownian motions can covary in any way across different different k.
12We also refer the reader to Fernholz and Karatzas (2009) for a more detailed discussion of the mathe-

matics behind Theorem 2.1 and rank-based stochastic processes more generally.
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across different ranks in the distribution, thus going beyond simpler formulations based on

the equal growth rates imposed by Gibrat’s law (Gabaix, 1999, 2009).

In the theoretical model we present in the next section, we measure exactly these pa-

rameters and then apply Theorem 2.1 to describe the equilibrium distribution of wealth.

As we demonstrate, the extra detail and tractability that this solution technique provides

allows us to also describe economic mobility and the implications of risk-sharing subgroups

of households.

3 Model

Consider an economy that is populated by N > 1 dynastic households. Each household

i = 1, . . . , N lives for a time of length S, and then at the end of its life passes on any remaining

wealth to a single offspring who starts its life at that instant in time. Households have joy-

of-giving bequest motives, and at each point in time t ≤ S they solve savings-consumption

problems that determine how much to consume and how to invest their savings.

3.1 Consumption, Investment, Taxes, and Wealth

The households in this setup have two investment options: a risk-free asset available to

all households that pays a return of r, and an individual-specific asset that is subject to

idiosyncratic risk. For all i = 1, . . . , N , we assume that the price of household i’s individual-

specific risky asset Pi evolves according to the stochastic differential equation

dPi(t) = λPi(t) dt+ κPi(t) dBi(t), (3.1)

where λ > r and κ > 0 represent, respectively, the expected instantaneous return of this

risky asset and the standard deviation of this instantaneous return. Note that λ and κ are

the same for all households. Following the heterogeneous-agent macroeconomics literature,

we assume that markets are incomplete and hence the risk involved in these N individual-
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specific assets cannot be shared or pooled across households.13 As a consequence, each

household in the economy faces uninsurable idiosyncratic investment risk.

We assume that the returns of the risk-free asset and the individual-specific risky as-

sets are exogenous, a simplification that follows Benhabib et al. (2011, 2014) and others

in this literature. It is straightforward, however, to endogenously derive individual-specific

asset returns that evolve according to geometric Brownian motions in a general equilib-

rium setting. Indeed, Angeletos and Calvet (2006) and Angeletos and Panousi (2011) derive

individual-specific returns to capital that are identical to equation (3.1) above, with λ equal

to the expected return to capital invested in a profit-maximizing private business that has

a neoclassical production function and is subject to idiosyncratic productivity shocks. In

this general equilibrium model, households earn labor income, and the risk-free return r is

endogenous and adjusts so that aggregate demand for the risk-free asset is zero. It follows,

then, that our decision to simplify the model and make asset returns exogenous is without

loss of generality and reflects this paper’s focus on the distribution of wealth and economic

mobility rather than asset pricing. Furthermore, because our results do not depend on the

specific returns of any assets, these results should be consistent with asset returns other than

the geometric Brownian motions derived by Angeletos and Panousi (2011).14

At each point in time 0 ≤ t ≤ S during its lifetime, each household i chooses a frac-

tion ϕi(t) of its wealth wi(t) to invest in the risky asset and a quantity ci(t) to consume.

Because households are symmetric across generations, these optimal choices do not depend

on the birth time of a particular household. We assume that households obtain utility from

consumption and a joy-of-giving bequest motive, and that they have utility functions that

feature constant relative risk aversion (CRRA). Thus, each household i = 1, . . . , N solves

13For simplicity, this model abstracts from any aggregate risk or covariance of idiosyncratic risk across
households, even though our solution technique as described in Section 2 can be applied to these more
complex settings (see Fernholz, 2016 for a discussion). Implicitly, then, we assume that the idiosyncratic
risk of the N households in this model cancels out in the aggregate.

14An open question for future research is whether or not the increased tractability and detail offered by
this paper’s approach and solution techniques may help to solve general equilibrium models with idiosyncratic
investment risk that extend the setups of Angeletos and Calvet (2006), Angeletos (2007), and Angeletos and
Panousi (2011).
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the maximization problem

J(w, t) = max
ci(t),ϕi(t)

Et

[∫ S

t

e−ρ(s−t) c
1−γ
i (s)

1− γ
ds+ e−ρ(S−t)χ

((1− τ)wi(S))
1−γ

1− γ

]
s.t. dwi(s) =

[
rwi(s) + (λ− r)ϕi(s)wi(s)− ci(s)

]
ds+ κϕi(s)wi(s) dBi(s),

(3.2)

where γ ≥ 1 is the coefficient of relative risk aversion, ρ > 0 is the discount rate, χ > 0

is the intensity of each household’s bequest motive, and 0 < τ < 1 is the economy-wide

estate tax rate imposed on bequests to offspring. The symmetry of this setup ensures that

in equilibrium all of the N households in the economy have the same functional form for

risky-asset demand ϕi(t) and consumption ci(t). The only factors that distinguish these

choices across households are their different levels of wealth.

Proposition 3.1. For each household i = 1, . . . , N and at each point in time 0 ≤ t ≤ S, the

policy functions ϕi(t) and ci(t) are given by

ϕi(t) =
λ− r

γκ2
, (3.3)

ci(t) =

(
eη(S−t) − 1

η
+ (χ(1− τ)1−γ)

1
γ eη(S−t)

)−1

wi(t), (3.4)

where

η =
(1− γ)r − ρ

γ
+

(1− γ)(λ− r)2

2γ2κ2
. (3.5)

The proof of Proposition 3.1 can be found in Appendix A. According to the proposition,

each household invests a quantity of wealth in its individual-specific risky asset that is

proportional to and increasing in the expected instantaneous excess return of that asset

λ − r, and that is decreasing in both risk aversion γ, and the variance of the risky asset’s

instantaneous return κ2. The intuition behind these components of risky-asset demand is

standard in macroeconomics and finance. The households’ optimal choice of consumption

varies over the life cycle and is decreasing in the intensity of the bequest motive χ and

increasing in the estate tax rate τ .

The setup of this section’s model is purposely parsimonious, and shares much in common

with the setup of Benhabib et al. (2014) as well as the setup in Appendix B of Fernholz

and Fernholz (2014). We choose this setup because of its simplicity and its ability to accu-

rately match the U.S. wealth distribution. It is important to emphasize, however, that our
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general, nonparametric solution technique—described in Section 2 above—can be applied

to essentially any theoretical model of wealth distribution. All that is necessary to do this

are estimates of the rank-based relative growth rates αk and volatilities σk generated by

different models. These estimates are then combined as in equation (2.19) from Theorem 2.1

to yield a rank-by-rank characterization of the stable distribution of wealth. Furthermore,

by applying our solution technique, we are also able to describe economic mobility and the

distributional implications of risk-sharing subgroups in the economy.

One advantage of the simple setup of this model is that the optimization problem (3.2)

is easily solved. This, in turn, is a direct consequence of assuming that households have

CRRA preferences and that returns are constant over time. In general, portfolio optimization

problems that combine more complex but realistic preferences with time-varying returns

present difficult challenges.15 Any progress solving these challenging problems would likely

lead to promising extensions of this setup.

The next step in our analysis is to characterize the dynamics of wealth for the households.

According to Proposition 3.1, for each household i = 1, . . . , N , these dynamics are given by

dwi(t) =

[
r +

(λ− r)2

γκ2
−
(
eη(S−t) − 1

η
+ (χ(1− τ)1−γ)

1
γ eη(S−t)

)−1
]
wi(t) dt

+

(
λ− r

γκ

)
wi(t) dBi(t),

(3.6)

where 0 ≤ t ≤ S. By Itô’s Lemma, then, it follows that

d logwi(t) = ψ(t) dt+

(
λ− r

γκ

)
dBi(t), (3.7)

where ψ(t) is given by

ψ(t) = r +
(2γ − 1)(λ− r)2

2γ2κ2
−
(
eη(S−t) − 1

η
+ (χ(1− τ)1−γ)

1
γ eη(S−t)

)−1

. (3.8)

In addition to these within-life wealth dynamics, each household i leaves an after-tax bequest

of (1− τ)wi(S) to its newborn offspring at the end of its life.

The model as it is set up so far does not generate a stable distribution of wealth. This is

15For a detailed discussion of some of these difficulties and the techniques that can be used to get around
them, see Campbell and Viceira (2002).
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apparent from the stability condition of Theorem 2.1, which states that there exists a stable

distribution of wealth if and only if the relative growth rates from equation (2.15) satisfy

α1 + · · · + αk < 0, for all k = 1, . . . , N − 1. The setup of the model so far implies that the

growth rates of wealth for all dynastic households in the economy are equal at all times,

which violates this stability condition. To address this issue, we introduce a redistributive

fiscal policy in which the government provides newborn households with a single lump sum

transfer. This transfer is financed by the estate tax τ that is imposed on all bequests. In

terms of the model, we assume that each household i born at time t ∈ {S, 2S, . . .} receives

a transfer equal to νi(t), where 0 ≤ νi(t) ≤ τw(t)
N

, for all i = 1, . . . , N .16 Similarly, for all

k = 1, . . . , N , let ν(k)(t) denote the transfer paid to the k-th wealthiest household at time

t. For now, we impose almost no structure on these transfers and allow them to depend on

many different factors including household wealth and rank. We shall specify below exactly

what conditions on the transfers νi(t) are necessary to ensure that a stable distribution of

wealth exists.

We wish to characterize the total wealth of the dynastic households in the economy. In

order to accomplish this, we use equation (3.7) and link households across generations using

the fact that after-tax bequests are equal to (1 − τ)wi(S). For all i = 1, . . . , N , the total

wealth held by dynastic household i at time t ≥ 0 is given by

logwi(t) = logwi(0) +

t̄(t)∑
j=1

log

(
1− τ +

νi(jS)

wi(jS)

)

+ t̄(t)

∫ S

0

ψ(s) ds+

∫ t−t̄(t)S

0

ψ(s) ds+

(
λ− r

γκ

)
Bi(t).

(3.9)

where

t̄(t) =

⌊
t

S

⌋
, (3.10)

denotes the largest integer less than or equal to t/S (the floor function).

The issue of stability of the distribution of wealth in models in which households face

idiosyncratic investment risk can be addressed in several different ways. Our approach is most

similar to Benhabib et al. (2014), who also achieve stability by introducing a redistributive

transfer policy paid to newborn households. A major advantage of this approach is its

16This latter condition ensures that the government budget is either balanced or in surplus.
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simplicity and tractability.

Alternatively, the fiscal transfer in this model can also be interpreted as the time-

discounted sum of future labor income, or human wealth. In this sense, our setup is very

similar to Zhu (2010), Benhabib et al. (2011), and Appendix B of Fernholz and Fernholz

(2014), all of who generate stability through a combination of labor income and limited inter-

generational transfers that ensure that the ratio νi(jS)
wi(jS)

from equation (3.9) does not decrease

to zero. Another technique to ensure stability is to include direct frictions that prevent

household wealth from falling below some positive threshold, as Champernowne (1953) and

Gabaix (2009) do. In all cases, however, some mechanism must be inserted into the model

to ensure that there is mean reversion and that the stability condition from Theorem 2.1 is

satisfied.

3.2 The Equilibrium Distribution of Wealth

In order to use the analysis and results from Section 2 to solve this section’s model, it is

necessary to modify the dynastic wealth accumulation processes for the households so that

they are continuous. This modification is not difficult and does not alter the steady-state

equilibrium distribution of wealth in any meaningful way.

For some t0 > 0, let Z = ∪∞
j=1[jS, jS + t0]. For all i = 1, . . . , N , let the modified version

of the dynastic wealth process w̃i follow the stochastic differential equation

d log w̃i(t) = ψ (t− t̄(t)S) dt+
1Z(t)

t0
log

(
1− τ +

νi (t̄(t)S)

w̃i (t̄(t)S)

)
dt+

(
λ− r

γκ

)
dBi(t). (3.11)

The processes w̃i modify the corresponding dynastic household wealth processes wi by chang-

ing the discontinuous jumps in wealth that occur from both bequest taxation at death and

lump sum transfers at birth into rapid but continuous changes in wealth that occur over brief

intervals of length t0. By adjusting the length of these intervals, the steady-state distribu-

tion of the modified dynastic household wealth processes w̃i approximates the steady-state

distribution of the unchanged dynastic household wealth processes wi arbitrarily well.

As intended, the modified wealth processes w̃i are of the same form as equation (2.1) from

Section 2. Indeed, equation (2.1) is equivalent to equation (3.11) if, for all i = 1, . . . , N , we

set

µi(t) = ψ (t− t̄(t)S) +
1Z(t)

t0
log

(
1− τ +

νi (t̄(t)S)

w̃i (t̄(t)S)

)
, (3.12)

16



and
M∑
z=1

δiz(t) dBz(t) =

(
λ− r

γκ

)
dBi(t). (3.13)

Having established the values of the general model from the previous section, we can now

apply Theorem 2.1 to solve for the stable distribution of wealth of this section’s model.

For all i = 1, . . . , N , let the modified wealth shares processes be defined by θ̃i =
w̃i

w̃
, where

w̃ = w̃1 + · · ·+ w̃N . Similarly, for all k = 1, . . . , N , define the parameters α̃k and σ̃k by

α̃k = lim
j→∞

1

S
log

(
1− τ +

ν(k)(jS)

w̃(k)(jS)

)
− 1

SN

N∑
ℓ=1

log

(
1− τ +

ν(ℓ)(jS)

w̃(ℓ)(jS)

)
, (3.14)

σ̃k =
√
2

(
λ− r

γκ

)
. (3.15)

These parameters correspond to the time-averaged rank-based relative growth rates and

idiosyncratic volatilities of this theoretical model, as defined more generally by equations

(2.15) and (2.16) above. We demonstrate this in the proof of Proposition 3.2 in Appendix

A. Because σ̃1 = σ̃2 = · · · = σ̃N , for simplicity we denote this common volatility by σ̃ = σ̃1.

As in Section 2, we wish to consider stable versions of the relative wealth processes

log θ̃(k) − log θ̃(k+1) and then characterize the equilibrium distribution of wealth using those

stable processes. In this case, however, because we have a model with an explicit parametric

structure, it also possible to describe the corresponding stable versions of the rank wealth

processes w̃(k). Following equation (2.18), these stable versions should smooth fluctuations

in the growth rate of the original processes by replacing these growth rates with their time-

averaged limits. For all k = 1, . . . , N − 1, let the stable version of the rank wealth processes

w̃(k) be the processes w∗
(k) defined by

d logw∗
(k)(t) = (α̃k + a) dt+

σ̃√
2
dBpt(k)(t)

+
1

2
dΛlogw∗

(k)
−logw∗

(k+1)
(t)− 1

2
dΛlogw∗

(k−1)
−logw∗

(k)
(t),

(3.16)

where a is a constant that measures the common growth rate of total wealth in the economy.17

These stable versions of the rank wealth processes yield corresponding stable versions of the

17As we demonstrate below, this common growth rate has no effect on the equilibrium distribution of
wealth, economic mobility, or the implications of risk-sharing subgroups.
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rank wealth share processes θ∗(k) using the definition θ∗(k) =
w∗

(k)

w∗ , where w∗ = w∗
(1)+ · · ·+w∗

(N).

It is straightforward to show that the stable versions θ∗(k) generate stable versions of the

processes log θ̃(k)−log θ̃(k+1) that match the original definition from equation (2.18) in Section

2.

Proposition 3.2. There exists a steady-state distribution of wealth in this economy if and

only if α̃1 + · · · + α̃k < 0, for k = 1, . . . , N − 1. Furthermore, if there is a steady-state

distribution of wealth, then for k = 1, . . . , N − 1, this distribution satisfies

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
=

σ̃2

−4(α̃1 + · · ·+ α̃k)
, a.s. (3.17)

Proposition 3.2 analytically characterizes the entire shape of the equilibrium distribution

of wealth in this economy with idiosyncratic investment risk.18 The bulk of the proof of this

proposition is simply an application of Theorem 2.1 (the full proof is in Appendix A). The

other main step in the proof is to show that the parameters ãk and σ̃ from equations (3.14)

and (3.15) correspond to the rank-based relative growth rates and volatilities as defined by

equations (2.15) and (2.16) above.

The N − 1 equations from Proposition 3.2 together with the fact that θ∗(1)(t) + · · · +
θ∗(N)(t) = 1 yields a simple system of equations that describes what share of the economy’s

total wealth each household will hold on average over time in this stable distribution.19

Consider an important special case of this proposition. If the values α̃1, . . . , α̃k are equal

for all k = 1, . . . , N − 1, then the stable equilibrium distribution of wealth in this setup is

approximately Pareto with parameter −4α̃1/σ̃
2 > 0. According to Proposition 3.2, then,

this model generates a Pareto distribution of wealth only in some cases. In fact, the full

equilibrium describes a more general distribution of wealth in which the Pareto parameter

may vary across different households. According to Kennickell (2009), Davies et al. (2011),

and Saez and Zucman (2014), a general distribution in which the Pareto parameter varies

in this way better describes the empirical distributions of wealth in most countries.

Proposition 3.2 states that two factors alone describe the stable distribution of wealth,

just like in equation (1.1) above. The first factor is household exposure to idiosyncratic

18Note that this theorem can be extended to a setup in which households have different expected returns
on their individual-specific investments. See Ichiba et al. (2011) for the technical details.

19In fact, this system of equations yields a solution for the certainty-equivalent approximation of the
wealth shares θ∗(1)(t), . . . , θ

∗
(N)(t), rather than the time-averaged value of those shares. See Banner et al.

(2005) for a discussion.
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investment risk, σ̃, and the second factor is the reversion rates of household wealth, measured

by−α̃k. An increase in households’ exposure to uninsurable investment risk linearly increases

the extent of inequality in the economy. This follows because for any k = 1, . . . , N − 1, a

higher value of log θ∗(k)(t) − log θ∗(k+1)(t) implies a larger gap between the wealth holdings

of two different households. Conversely, an increase in cross-sectional mean reversion (as

measured by the reversion rates) decreases the extent of inequality in the economy. The

effects of any change in policy or the economic environment on the equilibrium distribution

of wealth are entirely determined by the effects of this change on these two shaping factors.

According to equation (3.15), household exposure to idiosyncratic investment risk in equi-

librium is increasing in the excess return of households’ risky individual-specific assets, λ−r,
and decreasing in both risk aversion, γ, and the standard deviation of the return of these

risky individual-specific assets, κ. According to equation (3.14), the reversion rates of house-

hold wealth depend on how the ratios of lump sum transfers (paid to newborn households)

relative to wealth holdings,
ν(k)(t)

w̃(k)(t)
, vary across different ranked households. In Section 4, we

parameterize this model and impose more structure on these lump sum transfers. As Propo-

sition 3.2 demonstrates, this structure is an important factor in shaping the equilibrium

distribution of wealth.

Proposition 3.2 also states that asymptotic stability in this economy requires that the

expected growth rate of wealth for poor households be higher than for wealthy households.

This is ensured by the restriction that α̃1+ · · ·+ α̃k < 0, for k = 1, . . . , N−1. In other words,

stability requires positive reversion rates for the wealthiest households in the economy—their

wealth holdings must revert to the mean over time. What happens if all households have

the same expected growth rates of wealth? In this case, there is no asymptotic stability in

the distribution of wealth, and instead wealth becomes increasingly concentrated at the top

over time.

Proposition 3.3. If the relative growth rates are such that α̃1 = α̃2 = · · · = α̃N , then the

share of the economy’s total wealth held by the wealthiest single household, θ̃1, satisfies

lim
T→∞

1

T

∫ T

0

θ̃(1)(t) dt = 1, a.s. (3.18)

Proposition 3.3 describes how wealth becomes increasingly concentrated over time if all

households have the same expected growth rates of wealth, a result that is almost identical to
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the main result of Fernholz and Fernholz (2014).20 Because the only factor that distinguishes

the relative growth rates α̃k across households in this model are the lump sum transfers

that newborn households receive, νi(t), this result confirms that this policy is essential to

ensuring that a stable distribution of wealth exists in this economy. Indeed, only if the lump

sum transfers proportionally benefit poor households more than wealthy households does a

stable distribution of wealth exist. This restriction on proportional benefits is equivalent to

α̃1 + · · ·+ α̃k < 0, for k = 1, . . . , N − 1. Finally, Proposition 3.3 describes a specific example

of divergence, but this result can be generalized to describe many other instances in which

a divergent subpopulation of households eventually holds all wealth.21

3.3 Economic Mobility

One of the advantages of our solution technique in this paper is that it allows for a simple

analytic characterization of the extent of mobility that exists in the economy. In fact, we

are able to establish a direct link between economic mobility, inequality, and cross-sectional

mean reversion.

In order to explore the issue of mobility, it is useful to examine the process log θ∗(k) −
log θ∗(k+1) ≥ 0, which describes the dynamics of the difference between the shares of to-

tal wealth in the economy held by the k-th and k + 1-th wealthiest households. The ex-

pected time it takes for this process to reach zero is of particular interest. Indeed, whenever

log θ∗(k) − log θ∗(k+1) reaches zero, one household has overtaken another household in terms of

wealth holdings—one household has improved its economic standing, which is the meaning

of economic mobility. The longer it takes, on average, for one household to overtake another,

the less mobility there is in the economy.

To measure economic mobility, we define the stopping time

Sk(t) = inf{s ≥ 0 : θ∗(k)(t+ s) = θ∗(k+1)(t+ s)}, (3.19)

for k = 1, . . . , N − 1. This stopping time marks the first time after t that the k + 1-th

wealthiest household overtakes the k-th wealthiest household. Note that Sk(t) is defined in

terms of the steady-state versions of the processes θ∗(k), since we wish to characterize the

extent of economic mobility in the steady-state equilibrium of the model. The following

20For brevity, we refer the reader to Fernholz and Fernholz (2014) for a proof of Proposition 3.3.
21See Theorem 2.4 of Fernholz (2016).
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theorem describes the long-run behavior of this stopping time in two different ways.

Theorem 3.4. If there exists a steady-state equilibrium distribution of wealth, then for all

k = 1, . . . , N − 1,

E
[
Sk(t)

∣∣ θ∗(k)(t), θ∗(k+1)(t)
]
=

log θ∗(k)(t)− log θ∗(k+1)(t)

−2(α̃1 + · · ·+ α̃k)
, (3.20)

E [Sk(t)] =
σ̃2

8(α̃1 + · · ·+ α̃k)2
. (3.21)

Theorem 3.4 provides a direct measure of the extent of economic mobility in this setup.

The first result, equation (3.20), states that after controlling for the extent of inequality in

the distribution of wealth, long-run economic mobility is determined by the reversion rates of

household wealth. In particular, this equation shows that in the steady state, the expected

time before the k + 1-th wealthiest household overtakes the k-th wealthiest household is

proportional to the sum of reversion rates for different ranked households, −(α̃1 + · · ·+ α̃k),

and the initial inequality between the two households, log θ∗(k)(t)− log θ∗(k+1)(t). The second

result, equation (3.21), extends this result, stating that long-run economic mobility is entirely

determined by household exposure to idiosyncratic investment risk and mean reversion.

Theorem 3.4 represents one of the first attempts to describe in closed form the determi-

nants of mobility in a macroeconomic model in which households face uninsurable risks to

their incomes. The determinants of the extent of mobility—household exposure to idiosyn-

cratic investment risk and the reversion rates of household wealth—connect directly with the

discussion of the equilibrium distribution of wealth in Section 3.2. These determinants of

both inequality and mobility are themselves determined by the structural parameters of the

model, with the structure of lump sum transfers to newborn households the main determi-

nant of mean reversion, and risk aversion and the excess return and volatility of households’

individual-specific investments the main determinants of exposure to idiosyncratic invest-

ment risk.

Interestingly, Theorem 3.4 shows that of the two factors that shape the distribution of

wealth in this setup, cross-sectional mean reversion is the more important determinant of

economic mobility. The unevenness of this result is perhaps surprising. After all, there is

no obvious reason why this one factor should have a disproportionate effect on economic

mobility.

The characterization of economic mobility in this setup provides several interpretations
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of some recent empirical results, many of which have garnered attention from the public.

For example, Chetty et al. (2014) examine data from anonymous earnings records and find

substantial variation in intergenerational mobility across different geographical areas of the

United States. The authors show that those areas with more intergenerational mobility also

tend to have more unequal income distributions. This result is broadly consistent with the

predictions of our model, as are the empirical results of Corak (2013), who shows that those

countries with more unequal income distributions also tend to have lower mobility. More

generally, Theorem 3.4 provides a broad interpretation of the geographical variation in inter-

generational mobility that both Corak (2013) and Chetty et al. (2014) document. Because

the theorem directly connects economic mobility to inequality and mean reversion, the im-

plication is that any geographical variation in mobility also reflects geographical variation in

inequality and mean reversion. Furthermore, after controlling for inequality, any remaining

geographic variation in mobility reflects a similar geographic variation in mean reversion.

Theorem 3.4 provides results about one particular measure of economic mobility, but it is

natural to wonder about other more common measures of mobility as well. Later in the paper,

when we consider several different parameterizations and solve the model numerically, we

shall examine the model’s predictions for measures of mobility that are common in empirical

work. It is also possible to extend our theoretical results to more general measures of mobility.

Consider the process w∗∗
(k), k = 1, . . . N , given by

d logw∗∗
(k)(t) = x(α̃k + a) dt+

√
xσ̃√
2
dBpt(k)(t)

+
1

2
dΛlogw∗∗

(k)
−logw∗∗

(k+1)
(t)− 1

2
dΛlogw∗∗

(k−1)
−logw∗∗

(k)
(t),

(3.22)

where x is a positive constant. Similarly, for all k = 1, . . . N , let θ∗∗(k) =
w∗∗

(k)

w∗∗ , where w
∗∗ =

w∗∗
(1) + · · · + w∗∗

(k). It follows that θ∗(k) and θ∗∗(k) yield the same steady-state distributions of

wealth, since, for all k = 1, . . . , N − 1,

E[log θ∗∗(k)(t)− log θ∗∗(k+1)(t)] =
xσ̃2

−2x(α̃1 + · · ·+ α̃k)
=

σ̃2

−2(α̃1 + · · ·+ α̃k)
, (3.23)

which by Proposition 3.2, is also equal to E[log θ∗(k)(t) − log θ∗(k+1)(t)]. The processes θ∗∗(k)

adjust the household exposure to idiosyncratic investment risk and the reversion rates of

our original model by equal proportions, thus leaving the equilibrium distribution of wealth
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unchanged. This adjustment does, however, affect equilibrium economic mobility. Indeed,

even if inequality is unchanged, any change in reversion rates must affect mobility.

Let the stopping time T ∗
k,l(t) be defined as

T ∗
k,l(t) = inf{s ≥ 0 : θ∗i (t+ s) = θ∗(l)(t+ s) | θ∗i (t) = θ∗(k)(t)}, (3.24)

for k = 1, . . . , N and l ̸= k. Furthermore, let the stopping time T ∗∗
k,l(t) be defined as in

equation (3.24) but with the processes θ∗∗(k) replacing the processes θ∗(k), for all k = 1, . . . , N .

The stopping times T ∗
k,l(t) and T ∗∗

k,l(t) measure the time it takes for the k-th wealthiest

household at time t to transition to becoming the l-th wealthiest household in the economy.

In other words, this general measure of economic mobility captures the transition time

between any two ranks in the distribution of wealth.

Theorem 3.5. If there exists a steady-state equilibrium distribution of wealth, then for all

k = 1, . . . , N and l ̸= k,

E[T ∗
k,l(t)] = xE[T ∗∗

k,l(t)]. (3.25)

In many ways, Theorem 3.5 is more general than Theorem 3.4 since it describes the

changing behavior of the stopping times T ∗
k,l(t), which represent much broader measures of

mobility than the stopping times Sk(t). Theorem 3.5 demonstrates that the result from

Theorem 3.4 that mobility is increasing in the reversion rates of household wealth, after

controlling for inequality, holds for more general measures of mobility as well.

3.4 Risk-Sharing Subgroups

In addition to generating results on economic mobility, our solution technique allows us to

describe the implications of the presence of a subset of households that are able to share their

idiosyncratic investment risk with each other. In this sense, we are able to examine different

types of partially complete markets and to compare distributional and welfare outcomes in

those scenarios with those in the fully incomplete market setup that we have focused on so

far.

Not surprisingly, if some subset of households in our model are able to share their id-

iosyncratic investment risks with each other, then this subset of households can achieve a

better outcome in terms of expected utility. This expansion of complete markets also must

have an impact on the equilibrium distribution of wealth, since the wealth holdings of a
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subset of households are automatically equalized in this scenario. It is less clear, however,

what the impact on inequality will be and how the rest of the households in the economy

might be affected, if at all.

Using our rank-based solution technique, we are able to address these questions. We

consider a scenario in which households i = 1, . . . ,m, 1 < m < N , are now able to fully

share with each other the idiosyncratic risk associated with their individual-specific assets.22

Because of the symmetry across households and individual-specific assets in this setup, all

households in this risk-sharing subgroup choose identical portfolios and choose to fully di-

versify across all available risky investments in equilibrium.

In order to characterize the distributional implications of a risk-sharing subgroup of

households, we define, for k = 1, . . . , N −m+ 1, the occupation times

ζk = E
[
1{rt(1)=k}(t)

]
, (3.26)

where

rt(i) = k if w∗
i (t) = w∗

(k)(t). (3.27)

We assume that the households in this risk-sharing subgroup are ranked by index, so that

household i = 1 has the highest rank in the group and household i = m has the lowest

rank in the group. The occupation times ζk describe the time that each household in the

risk-sharing subgroup spends in each possible rank of the distribution. Because we have

ordered the rank of the households in the subgroup by index, it follows that there are only

N −m + 1 possible ranks that each household in this subgroup can occupy. It also follows

that ζ1 + · · ·+ ζN−m+1 = 1.

The existence of a risk-sharing subgroup has two separate effects on the equilibrium

distribution of wealth. First, the households in the subgroup are now subject to less volatility

from their risky investment and this has an effect on the growth rate of their wealth holdings.

Second, there is an equilibrium change in behavior—because the households in the subgroup

now have better risky investment options, they alter their consumption and invest more

aggressively in higher-return risky assets. These two effects are separate in the sense that even

in the absence of any equilibrium change in household behavior, there is still a substantial

impact on the economy from the fact that the wealth holdings of those households in the

22The assumption that households i = 1, . . . ,m are able to risk share, rather than some other subset of
households, is for simplicity and without loss of generality.
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risk-sharing subgroup are now less volatile. This effect only grows larger as risk-sharing

households alter their behavior in equilibrium and invest more aggressively in their pooled

risky asset. We distinguish between these two separate effects in our characterization of the

distributional implications of increased risk sharing.

Theorem 3.6. Suppose that the households in the risk-sharing subgroup do not change their

consumption or risky-asset allocations. If there exists a steady-state equilibrium distribution

of wealth, then the occupation times ζk must satisfy

N−m+1∑
k=1

ζk (α̃k + · · ·+ α̃k+m−1) =
(1−m)(N −m)

4N
σ̃2. (3.28)

If no solution exists, then ζ1 = 1.

Theorem 3.6 characterizes the occupation times ζk and describes the distributional out-

come for the risk-sharing subgroup of households in the absence of any change in their

consumption or portfolio choices. The factors that determine this outcome are essentially

the same factors that shape the distribution of wealth and determine economic mobility—the

reversion rates, −α̃k, and household exposure to idiosyncratic investment risk, σ̃2. These

factors are themselves determined by the structural parameters of the model, as discussed

in Section 3.2 above.

Recall the stability condition from Proposition 3.2, which implies that

α̃1 + · · ·+ α̃m < 0 < α̃N−m+1 + · · ·+ α̃N . (3.29)

Equation (3.29) can be generalized, since the sums α̃k + · · ·+ α̃k+m−1 will usually be larger

(and sometimes positive) for larger values of k. As a consequence, equation (3.28) implies

that if cross-sectional mean reversion is close to zero (and hence the sums α̃k + · · ·+ α̃k+m−1

are also close to zero) and household exposure to idiosyncratic investment risk is high,

then the risk-sharing subgroup of households will spend most of its time at the top of the

wealth distribution.23 Conversely, if mean reversion is substantially above zero and household

exposure to idiosyncratic investment risk is low, then the risk-sharing subgroup of households

will spend more time near the bottom of the wealth distribution. Of course, if cross-sectional

23If σ̃2 is sufficiently high, then there may be no solution to equation (3.28). In this case, ζ1 = 1 and the
risk-sharing subset of households remains permanently at the top of the wealth distribution.
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mean reversion is close to zero and household exposure to idiosyncratic investment risk is

high, then there is also substantial wealth inequality in the economy, and vice versa.

This result, then, may be restated in terms of the shape of the equilibrium distribution

of wealth: if inequality is high, then the risk-sharing subgroup of households rises to the

top of the distribution, and if inequality is low, then the risk-sharing subgroup of house-

holds falls near the bottom of the distribution. These effects are solely a consequence of

the lower volatility of household wealth for those households in the subgroup, since we as-

sume in Theorem 3.6 that these households do not change their consumption or risky-asset

allocations.

Corollary 3.7. If there exists a steady-state equilibrium distribution of wealth, then the

occupation times ζk must satisfy

N−m+1∑
k=1

ζk (α̃k + · · ·+ α̃k+m−1) =
m(1−m)(N −m)

4N
σ̃2 − m(N −m)

N
∆, (3.30)

where

∆ =
(m− 1)(λ− r)2

2γκ2
+

1

S
log

 η′
(
(1 + ηχ

1
γ )eηS − 1

)
η
(
(1 + η′χ

1
γ )eη′S − 1

)
 , (3.31)

and

η′ = η +
(m− 1)(1− γ)(λ− r)2

2γ2κ2
. (3.32)

If no solution exists, then ζ1 = 1.

Corollary 3.7 extends Theorem 3.6 and characterizes the occupation times ζk without

ignoring the equilibrium changes in consumption and portfolio choice for the risk-sharing

subgroup of households. The main difference between equations (3.28) and (3.30) is the

term ∆ > 0. This term captures the higher returns on wealth in the risk-sharing subgroup,

a direct consequence of those households in the subgroup investing more aggressively in

the many high-return individual-specific risky assets that are now available to them. More

precisely, the optimal risky-asset share ϕi(t) from equation (3.3) is higher than before for

the risk-sharing households since the variance of the return on an equal-weighted investment

in all of the risky assets available to them is lower than before. The higher risky-asset

investment share of these households leads to higher expected returns. Other than this extra

equilibrium effect, the implications of risk sharing as characterized by Theorem 3.6 and
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Corollary 3.7 are essentially the same. In both cases, higher inequality makes it more likely

that the risk-sharing subgroup of households will rise to the top of the wealth distribution.

Our results so far characterize only the distributional implications of a risk-sharing sub-

group of households. There are, however, also effects on both welfare and the long-run

expected growth rate of wealth for all households in the economy, even those that are not

in the risk-sharing subgroup. In all cases, the presence of a risk-sharing subgroup of house-

holds leads to higher welfare and higher expected long-run growth rates of wealth for all

households. The fact that this increase in welfare and the rate of wealth accumulation ex-

tends even to those households that are not part of the risk-sharing subgroup merits some

discussion.

The main reason for this is that households in the risk-sharing subgroup achieve higher

expected growth rates of wealth simply by sharing risk, even in the absence of changes in

their consumption or risky-asset allocations. This is a direct consequence of risk sharing

across households (see the proof of Theorem 3.6 in Appendix A). The faster pace of wealth

accumulation for this subset of households then raises the rate of wealth accumulation for the

entire economy, and this faster accumulation benefits all households. In our setup, this spread

of faster growth is driven by the redistributive lump sum transfers provided to newborn

households. These transfers raise the rate of wealth accumulation for those households at

the bottom of the wealth distribution, which are more likely to be the households outside

the risk-sharing subgroup. This same logic, in which higher growth rates at the bottom of

the distribution are central, describes the impact of a risk-sharing subgroup of households

in any model with a stable distribution of wealth. Indeed, the general stability condition for

the nonparametric model in Theorem 2.1 of Section 2 implies that lower-ranked households

must grow faster than higher-ranked households. If this stability condition is met, then a

risk-sharing subgroup of households will always raise the rate of wealth accumulation for all

households in the economy.
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4 Numerical Results

In this section, we parameterize the model of Section 3 and generate numerical results for the

equilibrium distribution of wealth, economic mobility, and the distributional implications

of risk-sharing subgroups of households. We also explore how changes in the structural

parameters of the model affect these results.

4.1 Baseline Parameterization

For all parameterizations in this section, we set the total number of households in the econ-

omy N = 1, 000, 000. The values of the basic structural parameters of the model r, γ, ρ,

and χ are chosen consistent with the macroeconomics literature. We set the risk-free rate of

return r = 0.03, the coefficient of relative risk aversion γ = 1.5, the discount rate ρ = 0.03,

and the intensity of each household’s bequest motive χ = 1.

Parameterizing the returns of households’ idiosyncratic investments is more difficult.

Both Flavin and Yamashita (2002) and Moskowitz and Vissing-Jorgensen (2002) provide

estimates of different components of these idiosyncratic returns, with the former focused on

the return of housing and the latter focused on the return of private equity. These analyses

led Angeletos (2007) to establish a basic calibration in which the expected investment return

is approximately 7% with a standard deviation of 20%. In our baseline parameterization, we

adopt these same values so that λ = 0.07 and κ = 0.2. By equation (3.15), this implies that

σ̃ =
√
2

(
λ− r

γκ

)
= 0.189. (4.1)

We also assume that S = 50, so that households live and earn income for 50 years, and

that the common estate tax rate τ = 0.2, a value that is consistent with both the related

literature (Zhu, 2010; Benhabib et al., 2011) and the average estate tax paid in the U.S.

The remaining parameters of the model, the lump sum transfers to newborn households

ν1, . . . , νN , are more delicate. These transfers are essential in shaping the equilibrium dis-

tribution of wealth, as can be seen from equation (3.17) and from the expression for the

parameters α̃k in equation (3.14). For this baseline parameterization, we assume that all

households receive the same lump sum transfer, so that ν1 = ν2 = · · · = νN , and we choose

the common value for this transfer that most closely matches the U.S. distribution of wealth
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in 2012 as reported by Saez and Zucman (2014).

Let ν denote the common lump sum transfer for all newborn households, and assume

that this transfer is constant over time. Furthermore, let ν̄ denote this common lump sum

transfer as a fraction of the total wealth of all households in the economy, so that ν = ν̄w̃.24

In this case, the equilibrium expression for the parameters α̃k from equation (3.14) becomes

α̃k = lim
j→∞

1

S
log

(
1− τ +

ν

w̃(k)(jS)

)
− 1

SN

N∑
ℓ=1

log

(
1− τ +

ν

w̃(ℓ)(jS)

)

= lim
j→∞

1

S
log

(
1− τ +

ν̄

θ̃(k)(jS)

)
− 1

SN

N∑
ℓ=1

log

(
1− τ +

ν̄

θ̃(ℓ)(jS)

)
. (4.2)

According to equation (4.2), the reversion rates −α̃k are determined primarily by the ratio

of lump sum transfers to total wealth ν̄ and the end-of-life wealth shares θ̃(k)(jS). Because

the reversion rates −α̃k themselves determine the steady-state equilibrium wealth shares θ∗(k)

according to equation (3.17), in equilibrium the steady-state shares θ∗(k) solve both equations

(3.17) and (4.2).25

Using equation (3.17), we solve for the steady-state log shares of the total wealth in the

economy held by all 1, 000, 000 households in the economy. Figure 1 plots these log shares

against those households’ log percent rank in the distribution of wealth for the baseline

parameterization of the model. The value of the common lump sum transfer ratio ν̄ for

this parameterization is τ
N

= 0.2
N
, which means that all of the government’s total revenue

from the estate tax is transferred back to the households. This value was chosen so that

the steady-state equilibrium shares generated by the model would most closely match the

2012 U.S. wealth shares data as reported by Saez and Zucman (2014). Table 1 reports the

shares of wealth held by different subsets of households in the economy for this baseline

parameterization of the model and for the U.S. in 2012. As the table demonstrates, despite

the simplicity of this transfer policy in which all households receive the same lump sum

transfers, the baseline parameterization of the model is able to achieve a near perfect fit of

24Note that ν̄ must satisfy 0 ≤ ν̄ ≤ τ
N , which guarantees that the government budget is either balanced

or in surplus.
25Note that the wealth shares from equations (3.17) and (4.2) are different, since the shares from equation

(3.17) are steady-state shares generated by the stable versions of the rank wealth processes w∗
(k) as defined

by equation (3.16), while the shares in equation (4.2) are end-of-life shares for the modified rank wealth
processes w̃(k) as defined by equation (3.11). This difference is accounted for by appropriately adjusting the
steady-state shares θ∗(k) to generate end-of-life shares.
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the data for the shares held by different subgroups within the top 1% of households in the

economy. This parameterization does, however, respectively underestimate and overestimate

the shares of total wealth held by the top 1-10% and bottom 90% of households in the

economy.

Theorem 3.4 characterizes the expected time before the k + 1-th wealthiest household

in the economy overtakes the k-th wealthiest household. While this closed-form, analytic

characterization is useful, we also wish to examine the predictions of our model for more

common measures of economic mobility. We generate predictions from the model for the

intergenerational rank-rank mobility measure used by Chetty et al. (2014) and Boserup

et al. (2014) to examine U.S. income and Danish wealth mobility, respectively, as well as

the medium-term rank correlations used by Kopczuk et al. (2010) to describe U.S. income

mobility.

Figure 3 plots the starting wealth percent rank and corresponding ending wealth percent

rank 50 years later for different households in the equilibrium distribution of wealth in our

baseline parameterization of the model. The figure shows the results after averaging over 500

50-year simulations of the model. The regression line in the figure has a slope of 0.737 and

intercept of 13.10, a result that implies a high level of persistence in wealth formation across

generations of households (a steeper slope indicates less economic mobility). Indeed, Boserup

et al. (2014) report a substantially flatter slope using intergenerational Danish wealth data.

While some of this difference is due to the lower wealth inequality in Denmark versus the

U.S., this gap in inequality is unlikely to be large enough to account for our results in Figure

3.

There are several possible explanations for this difference. First, this result is consistent

with the low intergenerational mobility reported by Boserup et al. (2014), Clark (2014), and

Lindahl et al. (2015) when tracking the persistence of wealth and other measures of social

status across multiple (more than two) generations. One interpretation of our estimate

in Figure 3 is that it lends support to these empirical studies and suggests that standard

one-generation estimates of mobility are too high.

Another possibility is that the idiosyncratic volatilities of wealth from our nonparametric

model in Section 2, σk, are underestimated in this baseline parameterization of the model

of Section 3. Higher estimates of these parameters would yield correspondingly higher es-

timates for cross-sectional mean reversion, and this would imply higher economic mobility
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in equilibrium as shown by Theorem 3.5. This possibility is supported by the fact that the

purely empirical estimates of the parameters σk constructed by Fernholz (2016) are sub-

stantially higher than our estimates for this baseline parameterization. This discrepancy is

largely because our model does not include idiosyncratic labor income risk, an assumption

necessary to maintain tractability and solve our general equilibrium model. Any extensions

of our framework that include other such sources of idiosyncratic risk would yield higher

estimates of intergenerational wealth mobility.

Table 3 reports the 10-year and 20-year rank correlations for the equilibrium distribution

of wealth in our baseline parameterization. As with the intergenerational rank-rank measure

of Figure 3, the results in Table 3 are obtained by averaging over 500 10-year and 20-year

simulations of the model. The 10-year and 20-year rank correlations reported in the table

are higher than the corresponding rank correlations reported by Kopczuk et al. (2010) using

U.S. income data. Because wealth mobility tends to be lower than income mobility (see, for

example, Boserup et al., 2014), some of this difference is surely because we are modeling the

distribution of wealth rather than income.

In Figure 7, we show the average rank over time of a risk-sharing subgroup of 100 house-

holds that starts in the middle of the equilibrium wealth distribution for our baseline pa-

rameterization of the model. The figure shows the average outcome for this subgroup in the

absence of changes in these households’ decisions about consumption or risky-asset alloca-

tions. If we were to include such changes in behavior, then this risk-sharing subgroup would

rise to the top of the distribution and remain there permanently. Even in the absence of these

growth-enhancing changes in behavior, Figure 7 demonstrates that the subgroup quickly rises

in rank until it settles around the top 10% of households. This rise within the equilibrium

distribution is due entirely to the direct increase in the rate of wealth accumulation caused

by risk sharing, as discussed in Section 3.4.

Figure 7 also plots the rank of an individual household over time in the absence of any

risk-sharing subgroup in the economy. As the figure clearly shows, the path of each risk-

sharing household through different ranks of the wealth distribution over time is much less

volatile than the path of an individual household outside this subgroup. Furthermore, the

households within the risk-sharing subgroup do not appear to revert back to the middle of

the wealth distribution in the way that a household outside this subgroup does (see also

Figure 3). Interestingly, Clark (2014) reports a similar lack of mean reversion over time
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among certain elite groups of people. Our results suggest that risk sharing among members

of those elite groups may be an explanation for this observation.

4.2 Alternate Parameterizations: The Role of Idiosyncratic In-

vestment Risk and Cross-Sectional Mean Reversion

One of the common themes from the theoretical results of Section 3 is that two factors—

the reversion rates of household wealth and household exposure to idiosyncratic investment

risk—entirely determine the equilibrium distribution of wealth and economic mobility. As

shown by equations (3.17) and (3.21), an increase in mean reversion, as measured by −α̃k,

reduces inequality, and an increase in exposure to idiosyncratic investment risk, as measured

by σ̃2, increases inequality.

These theoretical results can be observed by considering two alternate parameterizations

that slightly modify the baseline parameterization. In the first alternate, the common lump

sum transfer ratio ν̄ is decreased to 0.5τ
N

= 0.1
N
, so that only half of the government’s revenue

from the estate tax is transferred back to the households. According to equation (4.2),

this decreases the absolute value of the parameters α̃k, thus decreasing cross-sectional mean

reversion. In the second alternate parameterization, the standard deviation of households’

individual-specific risky asset returns is increased to κ = 0.25.26 According to equation

(3.15), this decreases the value of σ̃, thus decreasing household exposure to idiosyncratic

investment risk.

In Figure 2 and Table 2, we compare the equilibrium distributions of wealth for these

two alternate parameterizations and the baseline parameterization. The figure and table

confirm the basic result from Theorem 2.1 and Proposition 3.2—lower reversion rates in-

crease inequality, and lower exposure to idiosyncratic investment risk reduces inequality.

Similarly, in Figures 4-5, we compare intergenerational economic mobility for both alternate

parameterizations and the baseline parameterization.27 The second and third rows of Table 3

also report rank correlations for these alternate parameterizations. The figure and the table

both confirm the result from Theorem 3.4, since lower reversion rates lead to less economic

mobility.

26Because it is only the value of σ̃ that affects the equilibrium of the model, this alternate parameterization
can be reinterpreted as any combination of the parameters λ, κ, and r that yields the same value of σ̃.

27As always, these results are obtained by averaging the results of 500 simulations of the model.
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According to Figure 5 and Table 3, the parameterization of the model with a lower

exposure to idiosyncratic investment risk actually leads to less economic mobility than in

the baseline parameterization, despite the fact that this parameterization generates a more

even equilibrium distribution of wealth. This result is consistent with equation (3.20) from

Theorem 3.4, since, according to equation (4.2), a more even distribution of wealth for this

alternate parameterization implies less cross-sectional mean reversion than in the baseline

parameterization. According to our numerical results, then, the negative effect on economic

mobility of this lower mean reversion is larger than the positive effect of less inequality.

Finally, in Figure 6 and the last row of Table 3, we describe intergenerational mobility

and rank correlations for a fourth model parameterization that combines the changes in the

previous two alternate parameterizations. More specifically, this fourth alternate parame-

terization has a common lump sum transfer ratio of ν̄ = 0.5τ
N

= 0.1
N

and a standard deviation

of households’ individual-specific risky asset returns of κ = 0.25. This parameterization

generates an equilibrium distribution of wealth that is nearly identical to the distribution

from the baseline parameterization as in Figure 1. However, because household exposure to

idiosyncratic investment risk is lower than in the baseline parameterization, equation (3.17)

from Proposition 3.2 implies that cross-sectional mean reversion for this parameterization

must also be lower than in the baseline. According to Theorem 3.5, then, economic mobility

for this alternate parameterization should be lower than in the baseline parameterization, a

prediction that is confirmed by Figure 6 and Table 3.

In Figure 8, we plot the average rank over time of a risk-sharing subgroup of 100 house-

holds for the baseline parameterization and for the parameterizations of the model with a

lower lump-sum transfer ratio and a lower exposure to idiosyncratic investment risk. As

in Figure 7, this figure shows the average outcomes for this subgroup in the absence of

changes in these households’ decisions about consumption or risky-asset allocations. Ac-

cording to Figure 8, in all three parameterizations of the model, the risk-sharing subgroup of

households quickly rises in rank and eventually settles somewhere above the median in the

equilibrium distribution of wealth. The rank at which the subgroups settle is highest for the

high-inequality distribution of the lower lump-sum transfer ratio parameterization and it is

lowest for the low-inequality distribution of the lower exposure to idiosyncratic investment

risk parameterization. This result is consistent with our discussion of Theorem 3.6 from

Section 3.4. In particular, it confirms that the more unequal the equilibrium distribution of
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wealth is, the higher the risk-sharing subgroup of households rises in the distribution.

5 Conclusion

In this paper, we have introduced new techniques to solve a model in which finitely lived

heterogeneous households face uninsurable idiosyncratic investment risk and make optimal

decisions about how to consume, invest, and bequest wealth to their offspring. These tech-

niques yield a closed-form rank-by-rank characterization of the equilibrium distribution of

wealth that allows for a careful analysis of the determinants of inequality and mobility as well

as the implications of increased market completeness in the form of a risk-sharing subgroup

of households.

The extent of economic inequality in this setting is determined entirely by two factors—

households’ exposure to idiosyncratic investment risk and cross-sectional mean reversion as

measured by the reversion rates of household wealth. In the steady-state equilibrium, in-

equality increases in household exposure to investment risk and decreases in mean reversion.

We find that economic mobility is decreasing in inequality and increasing in mean reversion.

This last result is broadly consistent with the “Great Gatsby curve” (Krueger, 2012) and the

empirical results of Corak (2013) and Chetty et al. (2014). We also show that the presence

of a risk-sharing subgroup of households raises the rate of wealth accumulation for all house-

holds in the economy, and that this subgroup rises higher in a more unequal equilibrium

distribution of wealth.

A Proofs

This appendix presents the proofs of Propositions 3.1 and 3.2, Theorems 3.4, 3.5, and 3.6,

and Corollary 3.7.

Proof of Proposition 3.1. Under suitable regularity conditions, Itô’s Lemma implies that
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the Hamilton-Jacobi-Bellman equation for the maximization problem of household i born at

time 0 ≤ t ≤ S is given by

0 = max
ci(t),ϕi(t)

{
e−ρt c

1−γ
i (t)

1− γ
+ Jt(w, t) +

1

2
Jww(w, t)ϕ

2
i (t)κ

2w2
i (t)

+ Jw(w, t)[rwi(t) + (λ− r)ϕi(t)wi(t)− ci(t)]

}
,

where Jw(w, t) and Jt(w, t) denote respectively the partial derivatives of the value function

with respect to wealth w and time t. The first-order conditions for this maximization problem

are therefore

c−γ
i (t) = eρtJw(w, t), (A.1)

Jw(w, t)(λ− r)wi(t) = −Jww(w, t)ϕi(t)κ
2w2

i (t). (A.2)

The next step is to guess and verify the form of the value function J(w, t). We guess that

J(w, t) = e−ρta(t)
w1−γ

i (t)

1− γ
, (A.3)

where a(t) > 0 is a function of time. In this case, the first-order conditions (A.1) and (A.2)

imply that

ci(t) = a−
1
γ (t)wi(t), (A.4)

ϕi(t) =
λ− r

γκ2
. (A.5)

The last step of this proof involves solving for the function a(t) and confirming that

the value function from equation (A.3) does indeed satisfy the Hamilton-Jacobi-Bellman

equation from above. This is accomplished by substituting the optimal levels of consumption

and investment as given by equations (A.4) and (A.5) into the Hamilton-Jacobi-Bellman

equation. This yields

0 = a1−
1
γ (t)

w1−γ
i (t)

1− γ
+ a(t)w1−γ

i (t)

[
r +

(λ− r)2

γκ2
− a−

1
γ (t)

]
− a(t)w1−γ

i (t)
(λ− r)2

2γκ2

− ρa(t)
w1−γ

i (t)

1− γ
+ ȧ(t)

w1−γ
i (t)

1− γ
,
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which, after simplifying, implies that

0 = γa1−
1
γ (t) + a(t)

[
(1− γ)r − ρ+ (1− γ)

(λ− r)2

2γκ2

]
+ ȧ(t). (A.6)

Using the definition of η from equation (3.5) above, we can rewrite equation (A.6) as

0 = γa1−
1
γ (t) + γηa(t) + ȧ(t). (A.7)

Using the boundary condition a(S) = χ(1 − τ)1−γ, it is possible to solve equation (A.7),

yielding

a(t) =

(
eη(S−t) − 1

η
+ (χ(1− τ)1−γ)

1
γ eη(S−t)

)γ

.

Together with equations (A.4) and (A.5), this confirms that both the value function (A.3)

and equations (3.3)-(3.5) from Proposition 3.1 are correct.

Proof of Proposition 3.2. Banner et al. (2005) show that a model defined by the stable

version of the rank wealth processes as in equation (3.16) admits a steady-state distribution

if and only if α1 + · · · + αk < 0, for all k = 1, . . . , N . Furthermore, if such a steady-state

distribution exists, it satisfies equation (3.17).

We also wish to confirm that the parameters α̃k and σ̃ correspond to the rank-based

relative growth rates and idiosyncratic volatilities for the modified wealth processes w̃i. In

order to accomplish this, it is necessary first to show that the growth rate of aggregate wealth

w̃, which we denote by µ(t), satisfies

lim
T→∞

1

T

∫ T

0

µ(t) dt = lim
T→∞

1

T

∫ T

0

1

N

N∑
k=1

µpt(k)(t) dt, (A.8)

where µpt(k) refers to the growth rate process for the k-th ranked modified wealth processes

w̃i as given by equation (3.12). According to Fernholz (2002), Proposition 2.1.2, for all

i = 1, . . . , N ,

lim
T→∞

1

T

∫ T

0

µ(t) dt = lim
T→∞

1

T

∫ T

0

µi(t) dt.

In order to characterize the limit of the time-average of the process µ, then, we only need to

characterize the limit of the time-average of the processes µi. For all i = 1, . . . , N ,

µi(t) =
N∑
k=1

µpt(k)(t)I{0}

(
θ̃i(t)− θ̃(k)(t)

)
,
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so it follows that

lim
T→∞

1

T

∫ T

0

µ(t) dt = lim
T→∞

1

T

∫ T

0

µi(t) dt

= lim
T→∞

1

T

∫ T

0

N∑
k=1

µpt(k)(t)I{0}

(
θ̃i(t)− θ̃(k)(t)

)
dt. (A.9)

The ex-ante symmetry across households in this setup implies that the N households spend

the same fraction of time as each other in each rank. In other words, for all k = 1, . . . , N ,

lim
T→∞

1

T

∫ T

0

I{0}

(
θ̃i(t)− θ̃(k)(t)

)
dt =

1

N
,

which together with equation (A.9) implies that

lim
T→∞

1

T

∫ T

0

µ(t) dt = lim
T→∞

1

T

∫ T

0

1

N

N∑
k=1

µpt(k)(t) dt.

According to equation (A.8), the rank-based relative growth rates α̃k, k = 1, . . . , N − 1,

are given by

α̃k = lim
T→∞

1

T

∫ T

0

[
ψ (t− t̄(t)S) +

1Z(t)

t0
log

(
1− τ +

ν(k) (t̄(t)S)

w̃(k) (t̄(t)S)

)
− 1

N

N∑
l=1

ψ (t− t̄(t)S)− 1

N

N∑
ℓ=1

1Z(t)

t0
log

(
1− τ +

ν(ℓ) (t̄(t)S)

w̃(ℓ) (t̄(t)S)

)]
dt,

which simplifies to

α̃k = lim
T→∞

1

T

∫ T

0

1Z(t)

t0

[
log

(
1− τ +

ν(k) (t̄(t)S)

w̃(k) (t̄(t)S)

)
− 1

N

N∑
ℓ=1

log

(
1− τ +

ν(ℓ) (t̄(t)S)

w̃(ℓ) (t̄(t)S)

)]
dt

= lim
T→∞

1

T

t̄(T )∑
j=1

∫ jS+t0

jS

1

t0

[
log

(
1− τ +

ν(k) (jS)

w̃(k) (jS)

)
− 1

N

N∑
ℓ=1

log

(
1− τ +

ν(ℓ) (jS)

w̃(ℓ) (jS)

)]
dt

= lim
j→∞

1

S
log

(
1− τ +

ν(k) (jS)

w̃(k) (jS)

)
− 1

SN

N∑
ℓ=1

log

(
1− τ +

ν(ℓ) (jt̄)

w̃(ℓ) (jS)

)
. (A.10)

Equation (A.10), which confirms equation (3.14), uses the definition of t̄(t) from equation

(3.10) and the fact that Z = ∪∞
j=1[jS, jS+ t0]. Similarly, the common idiosyncratic volatility

37



σ̃ is given by

σ̃2 = lim
T→∞

1

T

∫ T

0

2

(
λ− r

γκ

)2

dt = 2

(
λ− r

γκ

)2

,

which confirms equation (3.15).

Proof of Theorem 3.4. Banner et al. (2005) show that, if our setup admits a steady-state

equilibrium, then the process log θ∗(k) − log θ∗(k+1) behaves asymptotically like a Brownian

motion that is reflected at the origin and has negative drift 2(α1 + · · ·+ αk). The expected

value of the stopping time at zero for a Brownian motion that is reflected at the origin and

has negative drift is simply equal to its initial value divided by the drift rate. This implies

that Sk(t), the stopping time at which the k + 1-th wealthiest household in the economy

overtakes the k-th wealthiest household, satisfies

E
[
Sk(t)

∣∣ θ∗(k)(t), θ∗(k+1)(t)
]
=

log θ∗(k)(t)− log θ∗(k+1)(t)

−2(α1 + · · ·+ αk)
, (A.11)

in the steady-state equilibrium. According to Theorem 2.1, in the steady-state equilibrium

it is also the case that

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
=

σ2

−4(α1 + · · ·+ αk)
. (A.12)

As a consequence, equations (A.11) and (A.12) imply that

E[Sk(t)] =
σ2

8(α1 + · · ·+ αk)2
,

which completes the proof.

Proof of Theorem 3.5. According to equations (3.16) and (3.22), the processes w∗∗
(k) are

related to the processes w∗
(k) by

w∗∗
(k)(t) = w∗

(k)(xt),

for all k = 1, . . . , N and t > 0. As a consequence, the events {w∗∗
i (t) = w∗∗

(k)(t)} are equivalent
to the corresponding events {w∗∗

i (xt) = w∗∗
(k)(xt)}, for all i, k = 1, . . . , N and t > 0. In the

steady state, the expected stopping times T ∗
k,l(t) and T

∗∗
k,l(t) are time invariant, so it follows

that

E[T ∗
k,l(t)] = xE[T ∗∗

k,l(t)],

which confirms equation (3.25).

Proof of Theorem 3.6. If the households in the risk-sharing subgroup do not change their

consumption or risky-asset allocations, then the dynamics of the stable versions of the wealth
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processes w∗
i are given by

d logw∗
i (t) =

{ [
1
m

∑m
j=1 α̃rt(j) +

(
1− 1

m

)
σ̃2

4

]
dt+ 1

m

∑m
j=1

σ̃√
2
dBj(t) for i = 1, . . . ,m

α̃rt(i) dt+
σ̃√
2
dBi(t) for i = m+ 1, . . . , N

.

(A.13)

Note that the wealth dynamics for those households in the risk-sharing subgroup are derived

using Itô’s Lemma as in Fernholz (2002), Proposition 1.1.15. Let wm denote the total wealth

holdings of all households in the risk-sharing subgroup, so that

wm(t) = w∗
1(t) + · · ·+ w∗

m(t),

and let wc denote the total wealth holdings of all households outside the risk-sharing sub-

group, so that

wc(t) = w∗
m+1(t) + · · ·+ w∗

N(t).

If the occupation times ζ1, . . . , ζN−m+1 are all positive in equilibrium, then it follows that

lim
T→∞

1

T
logwm(T ) = lim

T→∞

1

T
logwc(T ), (A.14)

otherwise either ζ1 = 1 or ζN−m+1 = 1. Using arguments similar to those in the proof of

Proposition 3.2, it can be shown that

lim
T→∞

1

T
logwm(T ) = lim

T→∞

1

T
logw∗

i (T ),

for i = 1, . . . ,m, and that

lim
T→∞

1

T
logwc(T ) = lim

T→∞

1

T
logw∗

i (T ),

for i = m + 1, . . . , N . Using equation (A.13), then, it follows that equation (A.14) implies

that

lim
T→∞

1

T

∫ T

0

[
N−m+1∑

k=1

k+m−1∑
j=k

1{rt(1)=k}(t)
α̃j

m
+

(
1− 1

m

)
σ̃2

4

]
dt =

lim
T→∞

1

T

∫ T

0

N−m+1∑
k=1

∑
j<k,j>k+m−1

1{rt(1)=k}(t)1{rt(i)=j}(t)α̃j dt,

(A.15)
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where m+ 1 ≤ i ≤ N . By symmetry,

lim
T→∞

1

T

∫ T

0

1{rt(1)=k}(t)1{rt(i)=j}(t) dt = lim
T→∞

1

T

∫ T

0

1{rt(1)=k}(t)
1

N −m
,

for all m+ 1 ≤ i ≤ N , k = 1, . . . , N −m+ 1, j < k, and j > k +m− 1, and in steady state

lim
T→∞

1

T

∫ T

0

1{rt(1)=k}(t)dt = E[1{rt(1)=k}(t)] = ζk,

for all k = 1, . . . , N −m + 1. Furthermore, we know that α̃1 + · · · + α̃N = 0, so it follows

that equation (A.15) can be simplified to yield

1

m

N−m+1∑
k=1

ζk (α̃k + · · ·+ α̃k+m−1) +

(
1− 1

m

)
σ̃2

4
= − 1

N −m

N−m+1∑
k=1

ζk (α̃k + · · ·+ α̃k+m−1) .

After further simplification, this yields

N−m+1∑
k=1

ζk (α̃k + · · ·+ α̃k+m−1) =
(1−m)(N −m)

4N
σ̃2, (A.16)

which confirms equation (3.28).

Because α̃N−m+1 + · · ·+ α̃N > 0, it follows that if no solution to equation (A.16) exists,

then it must be that the left-hand side of this equation is greater than the right-hand side for

all possible values of the occupation times ζk. In this case, however, it is also true that the

left-hand side of equation (A.15) is greater than the right-hand side for all possible values

of ζk as well, which implies that limT→∞
1
T
logwm(T ) > limT→∞

1
T
logwc(T ). Of course, this

means that the households in the risk-sharing subgroup are diverging from the rest of the

households in the economy, and hence ζ1 → 1.

Proof of Corollary 3.7. This proof is essentially the same as the proof of Theorem 3.6,

except that now the dynamics of the stable versions of the wealth processes w∗
i are given by

d logw∗
i (t) =

{ [
1
m

∑m
j=1 α̃rt(j) +

(
1− 1

m

)
mσ̃2

4
+∆

]
dt+ 1

m

∑m
j=1

√
m√
2
σ̃ dBj(t) for i = 1, . . . ,m

α̃rt(i) dt+
σ̃√
2
dBi(t) for i = m+ 1, . . . , N

.

(A.17)

There are two differences between equation (A.17) and equation (A.13), both the result

of households in the risk-sharing subgroup altering their behavior in response to their new

investment options. First, the term ∆ enters into the growth rate in equation (A.17). Second,

the standard deviation is multiplied by
√
m in equation (A.17) (and this also multiplies the

extra growth rate term that appears via Itô’s Lemma).
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The standard deviation is multiplied by
√
m in equation (A.17) because the optimal share

of wealth invested in the risky asset for those households in the risk-sharing subgroup is now

given by

ϕ′
i(t) =

m(λ− r)

γκ2
.

This implies that the standard deviation of the return on wealth for those households is

equal to
κ√
m

(
m(λ− r)

γκ2

)
=

√
m√
2
σ̃.

In this case, the share of wealth ϕ′(t) is invested in equal shares in each of the m individual-

specific risky assets that are available to the households in the risk-sharing subgroup.

Similarly, to see why ∆ enters into equation (A.17), note that according to equation (3.8),

the growth rate of wealth for households in the risk-sharing subgroup are now given by

ψ′(t) = r +
m(2γ − 1)(λ− r)2

2γ2κ2
−
(
eη

′(S−t) − 1

η′
+ (χ(1− τ)1−γ)

1
γ eη

′(S−t)

)−1

,

for 0 ≤ t ≤ S, where

η′ =
(1− γ)r − ρ

γ
+
m(1− γ)(λ− r)2

2γ2κ2
= η +

(m− 1)(1− γ)(λ− r)2

2γ2κ2
.

It follows that the modified wealth processes w̃i, i = 1, . . . ,m, in this case follow the stochas-

tic differential equation

d log w̃i(t) = ψ′ (t− t̄(t)S) dt+
1Z(t)

t0
log

(
1− τ +

νi (t̄(t)S)

w̃i (t̄(t)S)

)
dt+

1

m

m∑
j=1

√
m

(
λ− r

γκ

)
dBj(t).

By integrating the growth rate processes ψ and ψ′, it is not hard to show that

lim
T→∞

1

T

∫ T

0

[ψ′ (t− t̄(t)S)− ψ (t− t̄(t)S)] dt =
(m− 1)(λ− r)2

2γκ2
+

1

S
log

 η′
(
(1 + ηχ

1
γ )eηS − 1

)
η
(
(1 + η′χ

1
γ )eη′S − 1

)


= ∆,

which yields stable versions of the wealth processes w∗
i that match equation (A.17).

Using similar arguments as in the proof of Theorem 3.6, then, equation (A.17) implies
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that

1

m

N−m+1∑
k=1

ζk (α̃k + · · ·+ α̃k+m−1)+(m−1)
σ̃2

4
+∆ = − 1

N −m

N−m+1∑
k=1

ζk (α̃k + · · ·+ α̃k+m−1) ,

which after simplification yields

N−m+1∑
k=1

ζk (α̃k + · · ·+ α̃k+m−1) =
m(1−m)(N −m)

4N
σ̃2 − m(N −m)

N
∆,

thus confirming equation (3.30).
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Figure 1: Individual households’ wealth shares for the baseline parameterization of the model.
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Figure 2: Individual households’ wealth shares for three parameterizations of the model:
baseline (solid black line), lower lump-sum transfer ratio (dashed red line), and lower expo-
sure to idiosyncratic investment risk (dotted blue line).
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Figure 3: Intergenerational mobility (50 years) for the baseline parameterization of the
model. The rank-rank slope and intercept are 0.737 and 13.10, respectively.
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Figure 4: Intergenerational mobility (50 years) for two parameterizations of the model:
baseline (solid black line, rank-rank slope of 0.737 and intercept of 13.10) and lower lump-
sum transfer ratio (dashed red line, rank-rank slope of 0.774 and intercept of 11.38).
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Figure 5: Intergenerational mobility (50 years) for two parameterizations of the model:
baseline (solid black line, rank-rank slope of 0.737 and intercept of 13.10) and lower exposure
to idiosyncratic investment risk (dashed red line, rank-rank slope of 0.748 and intercept of
12.60).
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Figure 6: Intergenerational mobility (50 years) for two parameterizations of the model:
baseline (solid black line, rank-rank slope of 0.737 and intercept of 13.10) and both lower
lump-sum transfer ratio and lower exposure to idiosyncratic investment risk (dashed red line,
rank-rank slope of 0.774 and intercept of 11.61).
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Figure 7: The average percent rank of the households in the risk-sharing subgroup over time
(solid black line) and for an individual household with no risk sharing (dashed red line), for
the baseline parameterization of the model.
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Figure 8: The average percent rank of the households in the risk-sharing subgroup over
time for three parameterizations of the model: baseline (solid black line), lower lump-sum
transfer ratio (dashed red line), and lower exposure to idiosyncratic investment risk (dotted
blue line).
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Household Wealth Percent Rank Model Wealth Shares U.S. Wealth Shares

0-0.01 11.6% 11.2%

0.01-0.1 10.7% 10.8%

0.1-0.5 11.7% 12.5%

0.5-1 6.5% 7.3%

1-10 29.5% 35.4%

10-100 29.8% 22.8%

Table 1: Household wealth shares for the baseline parameterization of the model and for the
2012 U.S. wealth distribution.

Household Wealth Baseline Lower Lump-Sum Lower Exposure to

Percent Rank Parameterization Transfer Ratio Idiosyncratic Investment Risk

0-0.01 11.6% 24.1% 4.2%

0.01-0.1 10.7% 14.3% 6.2%

0.1-0.5 11.7% 12.5% 8.8%

0.5-1 6.5% 6.1% 5.6%

1-10 29.5% 23.5% 31.3%

10-100 29.8% 19.5% 44.2%

Table 2: Household wealth shares for three parameterizations of the model.

Parameterization 10-Year Rank Correlation 20-Year Rank Correlation

Baseline 0.9486 0.9005

Alternate 1 0.9530 0.9089

Alternate 2 0.9489 0.9011

Alternate 3 0.9560 0.9145

Table 3: Rank correlations for four parameterizations of the model: baseline, lower lump-
sum transfer ratio (Alternate 1), lower exposure to idiosyncratic investment risk (Alternate
2), and both lower lump-sum transfer ratio and lower exposure to idiosyncratic investment
risk (Alternate 3).
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