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Abstract

We describe and apply a method for choosing an informationally-optimal sequence of

questions in experiments, using subjects’ responses to previous questions. The method is

applied to Convex Time Budget experiments, in which subjects choose allocation of mone-

tary rewards at sooner and later dates, to elicit time preference parameters. “Ground truth”

simulation exercises create artiVcial choice data based on known parameters and then ap-

plies the method, and show how accurately and quickly parameter values can be recovered.

Results from online experiments further validate the advantage of our adaptive procedure

over the typical benchmark designs (in which the question sequence is not optimized). First,

the resulting parameter estimates from the adaptive procedure are close to typical values

measured in previous studies. Second, the adaptive procedure gives us much more precise

estimates compared to the benchmarks, especially during the middle part of the 20-question

experiment. Finally, the way the adaptive procedure achieves higher accuracy and speed

is expressed in subjects’ negatively autocorrelated choice patterns (frequently moving from

one end of the budget line to another), which is a result of the algorithm’s active search of

informative budget slopes. Many other applications to mature theory comparisons in behav-

ioral economics are described.
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1 Introduction

How can social scientists most eXciently accumulate empirical knowledge about human choice?

In this paper we advance one type of optimal method and apply it to inference about time pref-

erence.

In contrast to the approach pursued in this paper, most methods to measure constructs (like

time preference) in experimental social science are developed by intuitive hunches about what

types of questions will be precise, easy to implement, understandable to a range of human sub-

jects, and likely to be reproducible. New methods are tried out and adjusted by trial-and-error

testing. Then a de facto standard method often emerges. Methods become conventional when

standardization is useful, because Vndings produced by a common method can be more easily

compared.

In experimental economics, two primary methods have become the conventional ways to

measure time preference (Cheung, 2016; Cohen et al., 2016). The older method is asking people

to choose between a reward that is smaller but arrives sooner (called SS ) and a large reward but

which arrives later (called LL). These choices are typically oUered in the form of Multiple Price

List (e.g., Andersen et al., 2008; Coller andWilliams, 1999; Harrison et al., 2002; Laury et al., 2012;

Takeuchi, 2011) or sequential binary choice (used frequently in brain imaging studies, e.g., Kable

and Glimcher, 2007, 2010; McClure et al., 2004; Peters and Büchel, 2010).

In the second method, subjects allocate a Vxed budget of monetary rewards at each of the

two dates (called Convex Time Budget design; Andreoni et al., 2015; Andreoni and Sprenger,

2012a; Augenblick et al., 2015). Let’s be more precise: Consider two time points t1 and t2. A

linear budget set of allocations of monetary rewards to be received at those two times is a line

connecting two points (x̄t1 , 0) and (0, x̄t2) on a two-dimensional plane, where the former indi-

cates that an agent receives certain amount x̄t1 of reward on time t1 and nothing on t2, and the

latter indicates that she receives certain amount x̄t2 on time t2 and nothing on t1. Any points

on the interior of a budget set represent an allocation where she receives positive rewards on

both dates. Figure 1 illustrates two such budgets and choices from those budgets, marked as Bi

and xi, i = a, b. The slopes of budget lines represent intertemporal tradeoUs between rewards at

two time points (reWecting an implicit interest rate). This kind of budget-line Vgure appears in

every microeconomics textbook, typically showing a budget line in two-good space and a family

of continuous iso-utility indiUerence curves for bundles of goods in that space. Note, by the way,

that the budget sets need not be linear. Indeed, in general, more information can be gained if

nonlinear budget sets are permitted (which is a subject of our ongoing research, not reported
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Figure 1: An illustration of linear budget sets which ask allocations of monetary rewards to be received

at dates t1 and t2. A hypothetical subject chose allocation xa from budget Ba, from which the subject

receives positive amount on both dates t1 and t2. On the other hand, the subject receives positive amount

only on date t2 (and nothing on date t1) from allocation xb.

here).

In order to identify and estimate parameters of diUerent kinds of time preferences, an exper-

imenter needs to vary the time points (t1, t2), the slopes of the budget lines, and the level of the

budget lines (i.e., where they intersect the axes in Figure 1). Each budget line can be expressed as

a set of these numbers.

The overall design question is how to select a set of budget lines to best estimate time pref-

erences. In almost all previous studies, the set of budget lines was predetermined. Every subject

in an experimental treatment thus faced the same budgets, although the orders of presentation

could be diUerent across subjects. 1

This paper uses a diUerent approach, which we call DOSE (an acronym for Dynamicaly

Optimized Sequential Experimentation, the terminology introduced by Wang et al., 2010), and

applies it to estimation of time preferences. 2 In general, the DOSE method requires precise

speciVcation of several ingredients:

1. A domain of possible questions (e.g., a set of all possible budget lines);

1There are two exceptions (see Table A.1). In Choi et al. (2015), 50 budget sets were randomly generated for each

subject. In Andreoni et al. (2016), each subject answered only one question, which was randomly selected from the

predetermined set of questions.
2Others have developed similar adaptive approaches to estimate preferences; below we describe those ap-

proaches and highlight the advantages of ours.

3



2. A set of alternative hypotheses H (typically, combinations of parameterized theories such

as an exponential discounting function δt, or a hyperbolic discounting function 1/(1 + kt)

with speciVc values of parameters);

3. A prior probability over the setH; and

4. An information criterion, which is used to measure numerically which question is expected

to best distinguish the hypotheses inH.

The DOSE algorithm will choose a sequence of budget lines that are optimally informative,

as measured by a speciVc information criterion (described further below). After a subject makes

a choice, the posterior probabilities of all hypotheses in H are updated using Bayes’ rule. The

posterior is substituted for the prior in 3 above and the budget line with the highest information

value (computed in 4) is chosen for the next experimental trial or survey item. The algorithm re-

peats this procedure until it hits a pre-speciVed stopping criterion such as the maximum number

of questions or some function of the posteriors (e.g., when one hypothesis passes a threshold).

Intuitively, when the sequence of choices is customized for each subject in this way, the subjects

themselves tell us, through their answers, the “best” (i.e., most informative) question to ask them

next.

There are several potential advantages of DOSE approaches in general.

• DOSE algorithm maximizes information gained per question. Therefore, they could be

particularly useful for subject pools who have a high opportunity cost of time, or become

bored or habituated quickly. Such groups include highly-trained professionals, subjects

in online experiments (such as Amazon’s Mechanical Turk) who quit if experiments are

too long (creating problems of inference based on attrition), human groups such as lesion

patients or children, and animals that typically make long sequences of lab choices.

• The posterior distribution of all hypotheses is computed for each subject after each ques-

tion, since it is a crucial necessary step (ingredient 4 described above) in Vnding the most

informative budget line for the upcoming trial. Therefore, if the main purpose of the exper-

iment is inferences about preferences, the analysis is already done when the experiment is

over.

• DOSE method creates an instant statistical parametric assessment of each subject after

their experimental session is ended. These portraits can show which subjects seem most

impatient, most averse to risk, most reciprocal, most able to learn quickly, most strategic,
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and so on. These data could then be used to instantly cherry-pick diUerent statistical types

of people for the next phase of an experiment. This feature will be particularly useful

for experiments with brain imaging using functional magnetic resonance imaging (fMRI)

machines. A pre-scanning choice task with DOSE procedure gives researchers suXcient

information to individually tailor a set of questions to be presented inside the scanner. 3

• The fact that the DOSE method generates sequences of questions that are provably optimal

(given the priors) can sharpen discourse about what diUerent experimental designs are

good and bad for. Novel designs which are unconventional should gain credibility if they

have desirable informational properties. DOSE methods can be used in pre-experiment

simulation to select the best Vxed set of questions for survey modules. 4 DOSE methods

can also be used to judge the quality of older conventional designs.

Our speciVc application of the DOSEmethod is interesting because those estimated time pref-

erences are important, often surprisingly diUerent, and may depend systematically on elicitation

procedures.

Measures of time preference are important in many areas of applied economics. Discount

rates are likely to inWuence any choice that reWects valuation of costs and beneVts spread over

time. Domains include health (food and exercise), education, Vnancial markets, personal and

household Vnance. In economics, psychology and neuroscience, reliably estimating individual

diUerences in time preference is useful for explaining variation in choices, development of pa-

tience in children, and for creating computational phenotypes of psychiatric disorders.

Furthermore, a huge number of studies show large diUerences in estimated time preferences.

See Frederick et al. (2002) and Cohen et al. (2016) for summaries of the large amount of evidence.

People are estimated to be more patient for larger magnitudes, for losses compared to gains, and

for getting beneVts sooner compared to delaying them. There are also substantial diUerences

depending on how attributes of diUerent time-dated rewards are described or emphasized.

We noted earlier that the two most popular methods for measuring time preference are pair-

wise SS -LL choices, and choosing an allocation from a Convex Time Budget (CTB). A person

choosing a point on the budget line is generating more information because they are compar-

ing many diUerent time-reward bundles at a time. An advantage of budget line experiments is

3A similar approach has been taken in several existing brain imaging studies, in which discounting function

estimated from SS -LL choices generated by a staircase procedure is used to construct individually-tailored set of

questions in later fMRI task (e.g., van den Bos et al., 2014, 2015).
4In Falk et al. (2015), questions are selected by identifying the combination of survey items from an extensive

battery of alternative survey questions that best predicts choices in incentivized experiments.
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that they enable a test of consistency of choices with revealed preference conditions, such as

the Generalized Axiom of Revealed Preference (GARP; Afriat, 1967). This is a nonparametric

test of utility maximization and together with a measure of degree of violation, such as Afriat’s

(1972) Critical Cost EXciency Index (CCEI) or the Money Pump Index by Echenique et al. (2011),

researchers can quantify the “quality” of decision making of each individual. 5 Virtually all stud-

ies show high consistency with GARP (Choi et al., 2007, 2014), including studies with children

(Harbaugh et al., 2001) and capuchin monkeys (Chen et al., 2006).

While budget line methods are appealing because they generate more information (by pre-

senting more choices on each question), it is also possible that the complexity of choosing just

one point on a line generates diUerent expressed preferences than other methods. 6 The gen-

eral possibility that two methods produce conWicting results is called “procedure-variance”—

i.e., elicited preferences could be sensitive to the procedure used to elicit those preferences.

Procedure-variance has been the subject of much research in psychology and behavioral eco-

nomics (e.g., choice-matching preference reversals; see Tversky et al., 1990), but less in experi-

mental economics. In future research we plan to compare CTB to pairwise choice methods using

optimal adaptive designs, to test more directly whether expressed preferences vary systemati-

cally with procedures.

In any case, the CTB method has caught on quickly. It has been used in at least 35 studies

(half of which are already published), both in the laboratory, in lab-in-Veld tests, and in repre-

sentative surveys (see Table A.1 in Appendix A). 7 However, the earliest estimates of time pref-

erence measured using CTB are quite diUerent than other measures. In Andreoni and Sprenger

(2012a), for example, there is very little concavity of utility for money and no evident present bias

5For CTB choice data, Echenique et al. (2016b) propose rnonparametric evealed preference tests and measures

of degree of violations for several models including exponentially discounted utility model, quasi-hyperbolic dis-

counted utility model, and time-separable utility model.
6Andreoni and Sprenger (2012a) did compare the CTB estimates to those from a “double multiple price list”

(list of pairwise choices, for both time and risk; Andersen et al., 2008). A focus of many studies, including ours,

is speciVcations in which immediate rewards are weighted by one, and future rewards at time t are weighted by

βδt (Laibson, 1997; Phelps and Pollak, 1968). The parameter β is a preference for immediacy, or present-bias. The

parameter δ is a conventional discount factor. Note that when β = 1 this quasi-hyperbolic speciVcation reduces to

exponential discounting.

In the Andreoni and Sprenger’s (2012a) analysis, the correlation of the inferred discount rates δ in CTB and double

multiple price list, within subjects, was 0.42. At the same time, their estimates of β are quite close to one, while

most other methods estimate β < 1 (Imai et al., 2016).
7CTB datasets from some of the published studies are systematically analyzed in Echenique et al. (2016a,b) using

a revealed preference approach.
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for money. Rates of time discounting are comparable to many other studies, however (around

30%/year). There are also a large majority of allocations chosen as endpoints (also called as cor-

ners) of budget lines (i.e., all tokens allocated to rewards at only one date). If endpoint choices

are common, more information will be gained by systematically tilting budget line slopes up and

down, more aggressively than is done in a Vxed-sequence design (in order to Wip choices from

one endpoint to another). The DOSE method applied to CTB will speciVc exactly how to do that

most eXciently (as is detailed below).

2 Background

The DOSE method is an innovation in a developing family of adaptive methods used in various

Velds (though not much in experimental economics publications). The major contribution is a

particular measure of information value, called Equivalence Class Edge Cutting (EC2), which is

adaptively submodular, which therefore provably guarantees some useful theoretical and practi-

cal properties. The method was introduced in computer science by Golovin et al. (2010), and it

is applied here to novel economic questions. See Appendix B for the theoretical background of

this information value.

Earlier applications of optimal design methods were made in statistics (Lindley, 1956), deci-

sion theory (Howard, 1966), computer-assisted testing (CAT) in psychometrics (e.g., Wainer and

Lewis, 1990) and Bayesian experimental design (Chaloner and Verdinelli, 1995).

Adaptive methods extended these approaches to trial-by-trial question choice to optimize

information gain. Examples include cognitive psychology (e.g., Myung and Pitt, 2009), adaptive

choice-based conjoint measurement in marketing (e.g., Abernethy et al., 2008), and “active learn-

ing” methods in computer science (Golovin and Krause, 2010) and machine learning (Dasgupta,

2004; Nowak, 2009). Existing methods created by psychologists and economists to measure pa-

rameters such as risk aversion include Cavagnaro et al. (2013a, 2010, 2013b, 2011), Myung et al.

(2013, 2009), Toubia et al. (2013), and Wang et al. (2010). 8 We compare our method and these

existing ones in Section 3.5.

Computer scientists have shown that Vnding an optimal sequence of test choices is not just

8One unpublished paper (Ray et al., 2012) applied the EC2 criterion in a similar adaptive design framework which

they called Bayesian Rapid Optimal Adaptive Design (BROAD), but did not use a clear user interface like ours in the

experiments, did not compare BROAD with other sequencing methods, and did not report parameter estimates—

which are the numerical results of most interest for economics. Ray et al. (2012) demonstrated advantages of EC2

over other known algorithms in computer science, including information gain, value of information, and generalized

binary search.
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computationally diXcult (NP-hard) but is also diXcult to approximate (Chakaravarthy et al.,

2007). Several heuristic approaches have been proposed that perform well in some speciVc ap-

plications, but do not have theoretical guarantees (e.g., MacKay, 1992); that is, there are no proofs

about how costly the heuristic sequence will be compared to the optimal sequence. (The concept

of “costly” in computer science is roughly the number of trials.)

Note that some early eUorts to introduce static optimal design in experimental economics (El-

Gamal et al., 1993; El-Gamal and Palfrey, 1996; MoUatt, 2007, 2016) did not gain traction. The time

is now riper for DOSE methods because: Computing power is better than ever; scalable cloud

computing services such as Amazon’s Elastic Compute Cloud and Microsoft’s Azure, are avail-

able at a reasonable cost; the new method from computer science (EC2) applied here provides

theoretical guarantees on eXcient computability; and there are many new competing theories in

behavioral economics which need to be eXciently compared.

In experimental economics, there are two popular approaches for dynamic selection of ques-

tion items. In the (binary-choice) staircasemethod, originally developed in psychophysics (Corn-

sweet, 1962; von Békésy, 1947), one option is Vxed while the other option varies from trial to trial,

reWecting the subject’s response in the previous trial. The method can be used to identify indiUer-

ence points without Multiple Price List (also called as the bisection method; see, e.g., Abdellaoui,

2000; Dimmock et al., 2016; van de Kuilen and Wakker, 2011). In the iterative Multiple Price List

(e.g., Andersen et al., 2006; Brown and Kim, 2014), subjects complete two lists where the second

one has a Vner interval within the option chosen in the Vrst list. The crucial diUerence between

our adaptive procedure and those existing ones is that the latter does not rely on maximizing ob-

jective measures of informativeness of questions while the DOSE algorithm and related methods

discussed in Section 3.5 do.

In economic choice applications, there is one possible imperfection in DOSE methods: In

theory, subjects might prefer to strategically manipulate their early responses in order to get

“better" (more economically valuable) future questions.This is a potential problem because a

strategic earlier choice is diUerent from the choice they would make if they were making only a

single choice, or a choice they know to be the Vnal trial.

There are some sensible arguments against why strategizing is unlikely, and several types of

evidence that it is not occurring. Since it is easier to understand these arguments and evidence

after learning more about the method, and digesting our empirical results, we postpone them to

a penultimate section before the conclusion.

Linear budgets experiments have become a popular method for studying individual prefer-

ences in laboratory and Veld. Its Vrst use, to our knowledge, was by Loomes (1991). Linear
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budgets have been used to study social preferences (Andreoni and Miller, 2002; Andreoni and

Vesterlund, 2001; Fisman et al., 2015a,b,c, 2007; Jakiela, 2013; Karni et al., 2008), risk preferences

(Cappelen et al., 2015; Castillo et al., forthcoming; Choi et al., 2007, 2014; Halevy and Zrill, 2016;

Kariv and Silverman, 2015; Loomes, 1991), ambiguity preferences (Ahn et al., 2014; Bayer et al.,

2013; Hey and Pace, 2014), time preferences (Andreoni and Sprenger, 2012a; Augenblick et al.,

2015, among others presented in Table A.1 in Appendix A), and general utility maximization

with consumer goods and foods as rewards (Burghart et al., 2013; Camille et al., 2011; Harbaugh

et al., 2001; Sippel, 1997). In this paper we apply the DOSE to CTB environment, but in principle

it is applicable to linear budget experiments with any domains of choices.

3 Adaptive Experimental Design Method

The type of choice our method will be applied to is choices of rewards distributed over time. The

benchmark prescription for making these decisions is exponential discounting (which avoids

temporal inconsistency; Strotz, 1955). There is also a huge literature from psychology, behavioral

economics, animal behavior, and neuroscience providing evidence that human behavior is often

time-inconsistent, and people are willing to forego larger delayed rewards for smaller rewards

if they are immediate (Cohen et al., 2016; Frederick et al., 2002). Descriptive models that ac-

count for this departure from rationality vary from the one-parameter hyperbolic discounting

function (Mazur, 1987), to present-bias models, such as quasi-hyperbolic discounting (Laibson,

1997; Phelps and Pollak, 1968), and Vxed time cost models that have an additional parameter to

account for the observation that people pay a premium to choose options that are immediately

available (Benhabib et al., 2010). Models of time preference are useful in decision making in many

contexts, including consumer behavior, health (Gafni and Torrance, 1984), savings and consump-

tion (Angeletos et al., 2001), and organizing work (e.g., responses to deadlines O’Donoghue and

Rabin, 1999). Given the range of available models, a framework for eXciently comparing time

preference models can help choose the most descriptive model quickly.

3.1 Environment

We extend adaptive design methods developed for binary choice experiments to an environ-

ment with linear budgets as in Andreoni and Miller (2002), Choi et al. (2007), and Andreoni and

Sprenger (2012a). This extension is straightforward if the continuous range of possible alloca-
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tions on the budget line is discretized. 9

LetM denote the set of model classes and h ∈ H denote a hypothesis, which is a combi-

nation of a model class and a speciVc parametrization. For example, exponential discounting

with discount factor δ = 0.98 can be one hypothesis and quasi-hyperbolic discounting with a

pair of present bias and discount factor (β, δ) = (0.95, 0.99) can be another hypothesis. We are

endowed with a prior µ0 over H. We assume µ0(h) > 0 for all h ∈ H by pruning zero-prior

hypotheses from H in advance. The subset Hm ⊆ H denotes the set of sub-hypotheses (i.e.,

diUerent parameter speciVcations) under model m ∈ M. Let Q denote the set of all questions.

A question consists of two options in case of binary choice experiments, while it is a (discrete)

budget set in case of liner budget experiments. Let Xq denote the set of all possible responses (or
answers) to question q ∈ Q. We can suppress the subscript q by standardizing the representation

of responses. For example, X = {0, 1} would represent the set of available options, the left op-

tion (0) and the right option (1) in a binary choice question, and X = {0, 1, . . . , 99, 100} would
represent 101 equidistant points on a budget line. 10 We use X to represent a random variable

on X . Let r represent the round in the task. For example, qr ∈ Q indicates that question qr was

presented at round r and xr ∈ X indicates that xr was selected as a response to that question. A

vector qr represents a sequence of questions presented up to round r, i.e., qr = (q1, q2, . . . , qr).

Similarly, a vector xr = (x1, x2, . . . , xr) represents a sequence of responses up to round r. Com-

bining those, a pair of vectors or = (qr,xr) summarizes what have been asked and observed

so far, which we simply call an observation. The set of observations after round r is Or and we

let O =
⋃
r≥1Or denote the set of all observations. After every round r, we update our beliefs

to µr(·|or) by the Bayes’ rule. See Table 1 as a reference to those notations and deVnitions. As

usual, E stands for the expectation operator with respect to an appropriate measure and Pr is a

generic probability measure.

3.2 The Information Value of Questions

Quantifying the information value of questions is the most crucial part of adaptive experimental

design. In the current study, we consider a particular type of informativeness function ∆ : Q ×
O → R, the Equivalence Class Edge Cutting (EC2) criterion, proposed originally in Golovin et al.

9Discretization is harmless because most subjects choose a very limited set of round numbers which are multiples

of 100/10, 100/4 or 100/3.
10One can also view this representation as an allocation of 100 experimental “tokens” into two accounts, each of

which is associated with diUerent monetary value as in Andreoni and Sprenger (2012a).
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Table 1: List of variables.

Variable Description

M The set of model classes

H The set of hypotheses

Hm ⊆ H The set of hypotheses under model classm ∈M
Q The set of questions

X The set of responses to questions

qr = (q1, . . . , qr) A sequence of questions up to round r

xr = (x1, . . . , xr) A sequence of responses up to round r

or = (qr,xr) A sequence of observations (question-response pairs) up to round r

µ0 A prior belief overH s.t. µ0(h) > 0 for all h ∈ H and
∑

h∈H µ0(h) = 1

µr(·|or) A posterior belief after observing or

(2010) and later used in an unpublished work (Ray et al., 2012). 11

Given the sequence of questions and responses or = (qr,xr), we deVne the EC2 informational

value ∆EC2 of question q ∈ Q\{q1, . . . , qr} to be asked in round r + 1 by:

∆EC2(q|or) =

∑
x∈Xq

Pr[Xr+1 = x|or]

(∑
h∈H

Pr[h|Xr+1 = x,or]
2

)−∑
h∈H

µr(h|or)2. (1)

The Vrst component Pr[Xr+1 = x|or] is the probability of observing response x ∈ Xq condi-
tional on the past observations or, which is calculated by

Pr[Xr+1 = x|or] =
∑
h∈H

Pr[Xr+1 = x|h]µr(h|or). (2)

The second component Pr[h|Xr+1 = x,or] is the posterior belief of hypothesis h ∈ H
conditional on the updated observations ((qr, q), (xr, x)). It is calculated using the Bayes’ rule:

Pr[h|Xr+1 = x,or] =
Pr[Xr+1 = x|h,or]µr(h|or)∑

h′∈H Pr[Xr+1 = x|h′,or]µr(h′|or)

=
Pr[Xr+1 = x|h]µr(h|or)∑

h′∈H Pr[Xr+1 = x|h′]µr(h′|or)
.

(3)

11In the early phase of this project, we also considered another informativeness function based on the Kullback-

Leibler (KL) divergence (Kullback and Leibler, 1951), following El-Gamal and Palfrey (1996) and Wang et al. (2010).

In the simulation exercises we found that this informativeness function is signiVcantly slower than EC2 criterion in

preparation of next question. Since computational speed is essential, we decided not to pursue comparison of EC2

and KL.
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The last term, the sum of squared posteriors, is a constant term independent of q. We keep

this term for completeness in presentation (see Appendix B for theoretical background), but we

can ignore that term in practice.

One can interpret the EC2 informativeness function as the expected reduction in Gini impu-

rity following the observation ofXr. 12 The Gini impurity is commonly used in classiVcation and

regression tree (CART) machine learning applications. 13 It is deVned by

IGini(f) =
∑
j∈J

fj(1− fj) = 1−
∑
j∈J

f 2
j ,

where J is the set of “labels” (or “classes”) in the classiVcation problem and fj is the probability

of label j ∈ J . 14

Then, IGini(f) gives the expected rate of incorrect labeling if the classiVcation was decided

according to the label distribution f . Replacing the label set J with the hypothesis set H and

the label distribution with the posterior belief µr, we obtain the equivalence between our EC2

informativeness function and the expected reduction in Gini impurity:

∆EC2(q|or) = IGini(µr(·|or))− E[IGini(µr+1(·|or, (q, x)))],

where the expectation in the second term is taken with respect to Pr[Xr+1|or].

Computation of ∆EC2 . The necessary ingredients for calculation of ∆EC2(q|or) are (condi-

tional) choice probabilities Pr[Xr+1|h] and the posterior beliefs µr(h|or) for h ∈ H.
The posterior beliefs µr(·|or) are calculated using Bayes’ rule. The belief formation process

starts with an initial prior µ0. As new observations are accumulated, posterior beliefs are updates

using equation (3) based on the actual response xr+1. For the conditional choice probability

Pr[X|h], we need to impose some behavioral assumption that maps hypothesized preference to

observed choice, and preferably includes a reasonable type of noise in responses. In the current

study, we mainly consider a stochastic choice model in the form of multinomial logit (also called

12We thank RomannWeber for pointing out this relationship between the EC2 informativeness function and Gini

impurity.
13In a decision tree machine learning problem, the term purity refers to the quality of a predictive split within

a node of the tree: A split that classiVes observations perfectly has no ‘impurity’; a split which misclassiVes is

‘impure’.
14An impurity function is a function deVned on a (K − 1)-dimensional simplex {(f1, . . . , fK) : fk ≥ 0, k =

1, . . .K,
∑K

k=1 fk = 1} such that: (i) it is maximized only at (1/K, . . . , 1/K); (ii) it achieves its minimum at

the vertices of the simplex (where all probability is placed on one hypothesis, fj = 1 for some j); and (iii) it is a

symmetric function (i.e., permutation of does not change the value of the function).
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as sotfmax choice model; in the context of CTB choices see Harrison et al., 2013; Janssens et al.,

2016):

Pr[X = x|h] =
exp(Uh(x)/λ)∑

x′∈X exp(Uh(x′)/λ)
, (4)

where Uh is a parametrized utility function under hypothesis h ∈ H. The “temperature” (or

response sensitivity) parameter λ ≥ 0 controls the sensitivity of choice probabilities to the un-

derlying utility values. 15 The choice probability approaches to a uniform distribution as λ→∞
while it approaches to a degenerate probability distribution assigning all mass at the utility-

maximizing option as λ → 0. In general, possible values of λ can be incorporate as part of the

hypothesis space H to capture individual heterogeneity of noisiness or to distinguish optimally

between diUerent models of noise (e.g., Bardsley et al., 2009; Wilcox, 2008).

However, we decided to set λ as an exogenously Vxed parameter, since identifying the tem-

perature parameter at the same time as identifying other core preference parameters have proved

to be challenging in much simpler choice domains than ours (Wang et al., 2010).

3.3 Select Next Question

Given an informativeness function ∆EC2 , a question is selected to be asked in round r + 1 by

qr+1 ∈ argmax
q∈Q\{q1,...,qr}

∆EC2(q|or). (5)

In the extremely rare case of multiple maximizers of ∆EC2(q|or), the algorithm selects one ran-

domly. Notice that our question selection rule (5) is myopic—we are not taking the eUect of

response xr+1 to the potential future question selection into account. We discuss this limiting

feature brieWy in the concluding Section 7.

3.4 Prior Beliefs

In order to initiate the adaptive question selection procedure, we have to specify a Bayesian

prior µ0 over hypotheses. The easiest way to specify a prior is to assume that each model

15Other speciVcations of stochastic choices are possible. For example, one can specify a “trembling-hand” like

probabilistic choice model where the agent chooses her utility-maximizing allocation with probability 1 − ε while
making mistakes with probability ε. Another stochastic choice model would use Beta distribution, using the fact

that the optimal budget shares are bounded between 0 and 1 under a constant relative risk aversion (CRRA) utility

function (Hey and Pace, 2014).
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class m ∈ M has equal probability, which is then spread uniformly across all hypothesis h ∈
Hm in that model class. A useful alternative is a data-driven prior which uses distributions of

parameters obtained from existing studies. For example, Wang et al. (2010) suggest the following

procedure. First, estimates of each parameter are binned into n equiprobable bins. Second, the

midpoints of those bins are used as discrete mass points, each of which is assumed to have

1/n probabilities. One can also add “extreme” parameters to capture possibilities of outliers.

Assuming that three parameters are independently distributed, we obtain the prior µ0(h) by the

product of the Bayesian priors over the parameters. After running experiments and obtain more

data, we go back to the Vrst point and reVne our beliefs.

3.5 Comparison to Other Adaptive Design Approaches

It would be worth spending some time comparing the approaches we are taking here and other

existing methods such as Dynamic Experiments for Estimating Preferences (DEEP; Toubia et al.,

2013) and Adaptive Design Optimization (ADO; Cavagnaro et al., 2013a, 2010, 2013b, 2011; Myung

et al., 2013, 2009). Essentially, the main diUerence across methodologies lies in the formulation

of the informativeness function measuring the value of next questions.

In DEEP method, the question that maximizes the expected norm of the Hessian of the pos-

terior distribution at its mode, also called as the maximum a posteriori estimate (MAP estimate;

DeGroot, 1970), is selected for next round. The authors used the absolute value of the deter-

minant as the norm of the Hessian. This choice of informativeness function was motivated by

the fact that the asymptotic covariance matrix of the maximum likelihood estimator (MLE) is

equal to the inverse of the Hessian of the log-likelihood function at the MLE. In ADO method,

on the other hand, the informativeness of a question is measured in terms of Shannon’s mutual

information (Cover and Thomas, 1991).

In addition to the formulation of the informativeness function, there is another key diUerence

that distinguishes those existing approaches and the one we take here—DOSE requires discretiza-

tion of the parameter space while DEEP and ADO deal with continuous spaces. This feature can

be a disadvantage of our methodology, but at the same time it is inevitable given that the space

of choice alternatives in our linear budget environment is much larger than simple binary choice

environment in those previous studies.

Comparing DOSE against DEEP and ADO is beyond the scope of the current study is left for

future works.
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3.6 Implementation Details

The background computation engine (hereafter simply called engine) for our adaptive exper-

iment design is written in Java (version 8). The engine Vrst reads a conVguration Vle which

speciVes: (i) parameters for the design space; (ii) model classes and parameter values in each

class; (iii) a stopping criterion (maximum number of question or posterior threshold); and (iv)

the algorithm for question selection (EC2, Vxed, or random). It then constructs the set Q of all

possible questions (each of which consists of several options), prepares a prior belief µ0, calcu-

lates utility value of each option in each question under each hypothesis Uh(x), and calculates

the probability of choosing each option in each question under each hypothesis Pr[X|h]. Those

components need to be assembled and stored in the memory only once at the beginning of the

experiment. This part may take time depending on the sizes of Q and H as well as the com-

putational power of the hardware running the engine itself. However, we avoided this issue

and achieved a seamless experiment by running this part of the calculation in background while

experimental subjects are reading the instructions.

The user interface (GUI) for experimental subjects is written in HTML, JavaScript (Angu-

larJS), and CSS (Compass). The engine and the GUI are then communicated with PHP API—the

GUI receives parameters for the question to be displayed from the engine, and returns subjects’

responses to it. Sample screenshots for our time preference survey are presented in Appendix E.

For our simulation exercises presented in Section 4 and the online experiments presented in

Section 5, we set up on-demand instances on Amazon’s Elastic Compute Cloud. 16 After experi-

menting with several types of instances we settle to use Linux operating system on m3.2xlarge,

which has eight virtual central processing units (vCPUs), 30 GB memory, and 2 × 80 GB SSD

storage. 17

4 Simulation Exercises

To evaluate the performance of our adaptive design approach, we conduct several simulation

exercises. In a CTB experiment, every round a subject is asked to allocate experimental budget

between two time periods t and t + k. Date t is called the “sooner” payment date and t + k

is called the “later” payment date; the gap between them is the delay length k. In the original

Andreoni and Sprenger’s (2012a) version, choices were made by allocating 100 tokens between

16This is also called “EC2.” In order to distinguish it from our EC2 algorithm, we make “Amazon” explicit and call

it “Amazon EC2.”
17Other instance types, such as c3.2xlarge and c4.2xlarge, also perform well.
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two payment dates. There are token exchange rates (at, at+k) that convert tokens to money. The

slope of the budget line is thus determined by the gross interest rate over k periods, 1 + ρ =

at+k/at. By choosing sets of (t, k, at, at+k), the researcher can identify preference parameters

both at the aggregate and the individual level.

Let D = (D(t),D(k),D(at),D(at+k)) denote the design space, a collection of vectors spec-

ifying the spaces of parameters. For example, D(t) = (0, 7, 35) and D(at+k) = (0.20, 0.25) are

part of the design space used in Andreoni and Sprenger (2012a). The set of questionsQ is thus all

possible combinations of the numbers in the vectors D contains. We may use a notation Q(D)

to make the underlying design space to make this question set explicit.

The adaptive design method described in Section 3 is general enough to be applicable to

many types of model discrimination, but in the following simulation exercises, as a Vrst step,

our primary interest is in parameter estimation Vxing one model class. This is because many re-

searchers have used CTB method to estimate parameters in quasi-hyperbolic discounting (QHD)

model (QHD; Laibson, 1997; Phelps and Pollak, 1968). 18

Assuming a QHDwith constant relative risk aversion (CRRA) utility function, a consumption

(ct, ct+k) is evaluated (at time 0) as:

U(ct, ct+k) =
1

α
(ct + ω1)

α + β1{t=0}δk
1

α
(ct+k + ω2)

α, (6)

where δ is the per-period discount factor, β is the present bias, α is the curvature parameter, and

ω1 and ω2 are background consumption parameters. For simplicity, we assume (ω1, ω2) = (0, 0)

and focus on (α, β, δ), which determines one hypothesis h.

We report results from four sets of model recovery exercises (also known as a “ground truth”

analysis) below. In each simulation exercise, we assume a “true” underlying preference h0 ∈ H
and generate choices according to that model. Questions are prepared either by an adaptive

procedure or by a random selection from Q (without replacement). We are mainly interested in

how fast and precise the adaptive design can recover the true model.

4.1 Prior for Quasi-Hyperbolic Discounting Parameters

We describe how we construct a data-driven prior for quasi-hyperbolic discounting model. We

follow the econometric approaches proposed in Andreoni and Sprenger (2012a) and apply it to

18See Andreoni and Sprenger (2012a), Andreoni et al. (2016, 2015), Augenblick et al. (2015), Balakrishnan et al.

(2015), Bousquet (2016), Brocas et al. (2016), Janssens et al. (2016), Kuhn et al. (2015), Sawada and Kuroishi (2015), Sun

and Potters (2016).
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choice data from three experiments using CTB (Andreoni et al., 2015; Andreoni and Sprenger,

2012a; Augenblick et al., 2015).

Consider a quasi-hyperbolic discounting with a constant relative risk aversion (CRRA) utility

function of the form (6):

U(ct, ct+k) =
1

α
(ct + ω1)

α + β1{t=0}δk
1

α
(ct+k + ω2)

α,

where δ is the per-period discount factor, β is the present bias, α is the curvature parameter, and

ω1 and ω2 are background consumption parameters. Maximizing (6) subject to an intertemporal

budget constraint

(1 + ρ)ct + ct+k = B,

where 1 + ρ is the gross interest rate (over k days) and B is the budget, yields an intertemporal

Euler equation

ct + ω1

ct+k + ω2

=
(
β1{t=0}δk(1 + r)

) 1
α−1 .

Andreoni and Sprenger (2012a) proposed two methods for estimating parameters (α, β, δ).

The Vrst one estimates the parameters in the log-linearized version of the Euler equation

log

(
ct + ω1

ct+k + ω2

)
=

log β

α− 1
· 1{t = 0}+

log δ

α− 1
· k +

1

α− 1
· log(1 + r) (7)

using two-limit Tobit regression in order to handle corner solutions under an additive error

structure. The second one estimates the parameters in the optimal demand for sooner consump-

tion

c∗t =

(
1

1 + (1 + r)(β1{t=0}δk(1 + r))1/(α−1)

)
ω1

+

(
(β1{t=0}δk(1 + r))1/(α−1)

1 + (1 + r)(β1{t=0}δk(1 + r))1/(α−1)

)
(B + ω2)

(8)

using Nonlinear Least Squares (NLS). In either case, parameters (α, β, δ) are recovered via non-

linear combination of estimated coeXcients.

We take choice datasets from three recent experiments using CTB, Andreoni and Sprenger

(2012a), Andreoni et al. (2015), and Augenblick et al. (2015), and estimate parameters (α, β, δ) for

each individual subject. 19 We prepare two sets of estimates: the Vrst one uses two-limit Tobit

19Augenblick et al. (2015) assume no heterogeneity in utility curvature α in their individual-level parameter

estimation.
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Figure 2: Distributions of estimated parameters (α, β, δ) from Tobit regression (panels A-C in the left

column) and NLS (panels D-F in the right column).

regression and sets background consumption levels at (ω1, ω2) = ($5, $5), and the second one

uses NLS approach assuming no background consumption. 20

Figure 2 shows histograms of estimated parameters from two estimation methods (Tobit for

panels A to C and NLS for panels D to F), pooling three dataset together. The x-axes are trimmed

to reduce the visual eUects of outliers while covering at least 70% of the data points. NLS es-

timates suggest preferences that are closer to linear consumption utility and no present bias

compared to those implied by Tobit estimates.

The summary statistics of estimated parameters in Table 2 clearly reveal that estimates (α

in particular) have outliers. Therefore, we apply Tukey’s (1977) boxplot approach to detect and

remove outliers. This approach makes no distributional assumptions nor does it depend depend

on mean or standard deviation. Let Q1 and Q3 denote the Vrst and third quartile, respectively.

The diUerence between the third and Vrst quartiles, Q3 −Q1, is called inter-quartile range (IQR).

20The assumption of (ω1, ω2) = ($5, $5) has been used in Augenblick et al. (2015). In all of the three experiments,

there were minimum payments of $5 at each payment date.
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Table 2: Quantiles of estimated parameters (before removing outliers).

Percentile

Parameter Method N Min 10% 20% 30% 40% 50% 60% 70% 80% 90% Max

Curvature (α) Tobit 232 -14641.04 0.2892 0.7825 0.8540 0.9097 0.9372 0.9620 0.9713 0.9713 0.9793 3966.00

Discount factor (δ) Tobit 232 0.9323 0.9934 0.9961 0.9970 0.9979 0.9986 0.9991 0.9991 0.9997 1.0017 1.2641

Present bias (β) Tobit 232 0.0350 0.8838 0.9463 0.9746 0.9991 1.0000 1.0000 1.0327 1.0650 1.1191 268.513

Curvature (α) NLS 230 -859.077 0.8406 0.9225 0.9603 0.9803 0.9957 0.9983 0.9983 0.9993 0.9994 0.9999

Discount factor (δ) NLS 230 0.8883 0.9962 0.9974 0.9982 0.9982 0.9984 0.9991 0.9996 0.9997 1.0003 1.2334

Present bias (β) NLS 230 0.0000 0.9039 0.9649 0.9843 0.9999 1.0008 1.0032 1.0041 1.0100 1.0661 1.5951

Table 3: Quantiles of estimated parameters (after removing outliers).

Percentile

Parameter Method N Min 10% 20% 30% 40% 50% 60% 70% 80% 90% Max

Curvature (α) Tobit 194 0.6644 0.8049 0.8706 0.9145 0.9326 0.9593 0.9713 0.9713 0.9726 0.9817 0.9941

Discount factor (δ) Tobit 202 0.9926 0.9957 0.9964 0.9973 0.9981 0.9986 0.9991 0.9991 0.9993 1.0003 1.0031

Present bias (β) Tobit 199 0.8448 0.9231 0.9571 0.9769 1.0000 1.0000 1.0000 1.0141 1.0466 1.0780 1.1693

Curvature (α) NLS 206 0.8756 0.9162 0.9537 0.9767 0.9926 0.9983 0.9983 0.9987 0.9993 0.9994 0.9999

Discount factor (δ) NLS 207 0.995 0.9971 0.9977 0.9982 0.9982 0.9985 0.9991 0.9996 0.9997 1.0000 1.0019

Present bias (β) NLS 170 0.9348 0.9695 0.9811 0.9986 0.9999 1.0008 1.0009 1.0041 1.0041 1.0100 1.0450

Tukey (1977) deVned fences as the boundaries of the interval

F = [Q1 − 1.5 · IQR, Q3 + 1.5 · IQR].

An observation is an outlier if it is outside the interval F . The summary statistics after removing

outliers detected by this approach is shown in Table 3 and the eUects of this procedure are graph-

ically represented (as changes in the shapes of boxplots) in Figure 3. From this point forward,

we focus only on estimates from Tobit regression since they cover wider range than those from

NLS.

We now construct a data-driven prior over model parameters following and extending the

approach taken in Wang et al. (2010).

• For α and δ, we Vrst bin the estimates into Vve equiprobable bins. Let bi, i = 0, . . . , 5,

denote the boundaries of those bins where b0 is the minimum, b5 is the maximum, and

the rest correspond to quintiles of the distribution. We then take midpoints of those bins,

(bi + bi+1)/2, i = 0, . . . , 4, to use as discrete mass points and assign equal prior probability

to each of them.

• For β, we construct a non-uniform prior to reWect the fact that the distribution of estimates
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Figure 3: Boxplots of parameters estimated with Tobit (left panels) and NLS (right panels). Panels A to C

display all data-points while panels D to F remove outliers.

has a huge mass at 1. We Vrst bin the estimates into 10 equiprobable bins with boundaries

bi, i = 0, . . . , 10 as before. We take seven midpoints βj , j = 1, . . . , 7, by:{
b0 + b1

2
,
b1 + b2

2
,
b2 + b4

2
,
b4 + b6

2
,
b6 + b8

2
,
b8 + b9

2
,
b9 + b10

2

}
.

By construction, the middle three mass points have 20% prior probability while the rest

have 10% each.

This procedure yields parameter values shown in Table 4. Assuming that three parameters

are independently distributed, we obtain the prior µ0(h) by the product of the Bayesian priors

over the parameters. We call a collection of vectors H = (H(α),H(δ),H(β)) the hypothesis

space. The set of hypotheses H is thus the all possible combinations of the numbers in the

vectors H contains. We may use a notation H(H) to make the underlying hypothesis space

explicit. There are 175 hypotheses under the hypothesis space presented in Table 4.

In the current study the temperature parameter λ is not part of the hypothesis space our

adaptive algorithm tries to distinguish. Here we propose a practical lower bound approach to

guide the selection of λ.

Under our multinomial logit choice model (4), there is a lower bound of the temperature

parameter, λ, that Java can handle without any trouble. This is because Java cannot store number
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Table 4: Data-driven prior—parameter values and their initial probabilities.

α 0.7675 0.9016 0.9519 0.9719 0.9833

µ0(α) 0.2 0.2 0.2 0.2 0.2

δ 0.9945 0.9972 0.9986 0.9992 1.0012

µ0(δ) 0.2 0.2 0.2 0.2 0.2

β 0.8839 0.9401 0.9786 1.0000 1.0233 1.0623 1.1237

µ0(β) 0.1 0.1 0.2 0.2 0.2 0.1 0.1

larger than approximately 1.8 × 10308 in a double-precision Woating-point format, and it occurs

somewhere between exp(709) and exp(710). Given a design spaceD and a hypothesis spaceH,

we can calculate the maximum possible utility that a subject can potentially receive:

ū = max
h∈H(H)

max
q∈Q(D)

max
x∈Xq

Uh(x).

We then Vnd the lower bound λ such that exp(ū/λ) = ∞ for λ < λ and exp(ū/λ) < ∞ for

λ ≥ λ, using a simple binary search algorithm.

4.2 Simulation Parameters

We use the hypothesis spaceH presented in Table 4 throughout this section. We conduct a 2×2

exercise—two design spaces D combined with two levels of temperature λ. Two design spaces

are:

D1 =


t : (0, 7, 28)

k : (21, 35, 42, 56)

at : (0.14, 0.15, 0.16, 0.17, 0.18)

at+k : (0.17, 0.18, 0.19, 0.20, 0.21)

 ,

D2 =


t : (0, 14, 28)

k : (14, 21, 28, 35)

at : (0.91, 0.94, 0.97, 1.00, 1.03)

at+k : (1.00, 1.03, 1.06, 1.09, 1.12)

 .
The numbers in the Vrst design space are chosen so that the reward magnitudes are comparable

to those in Andreoni and Sprenger’s (2012a), Andreoni et al. (2015), and Augenblick et al. (2015),
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Table 5: Simulation parameters.

Simulation ID Design space Hypothesis Space λ

1A D1 H from Table 4 0.04

1B D1 H from Table 4 0.18

2A D2 H from Table 4 0.18

2B D2 H from Table 4 0.72

which our data-driven priors are based upon. The second design space is the one we use in the

online pilot survey. In both cases, the total number of questions in Q is 300.

We calculate the practical lower bound of the temperature parameter under each pair (H,Di),

i = 1, 2, and obtain values λ(H,D1) = 0.04 and λ(H,D2) = 0.18. The resulting sets of simula-

tion parameters are presented in Table 5.

Pairs of simulation (1A, 1B) and (2A, 2B) are intended to check the eUects of noisiness in

stochastic choices. By comparing simulations 1AB and 2ABwe can look at whether or not reward

magnitudes inWuence the performance of the algorithm.

4.3 Procedure

Every simulation s ∈ {1A, 1B, 2A, 2B} consists of |H| = 175 “subsimulations,” in which: (i) One

hypothesis h ∈ H is Vxed as the “true model”; (ii) 45 questions are generated by three selec-

tion rules: EC2, “Fixed,” and “Random”; and (iii) Choices are generated with stochastic choice

model (4) together with assumed parameter values h. 21 We repeat this procedure 100 times for

each h.

The Random rule selects questions purely randomly (without replacement) from the entire

set of questions Q. The Fixed rule pre-speciVes the order of 45 questions, the idea of which

is to capture common features of CTB design in existing studies. For example, typical CTB

design “blocks” questions based on the time frame (t, k), and subjects complete several questions

under the same time frame before moving to another time frame. Within each time frame,

subjects often see questions that are ordered by the gross interest rates (see Tables D.1 and D.2

in Appendix D).

21We simulate choices following a procedure described in Meier and Sprenger (2015). The stochastic choice (4)

gives a cumulative distribution function F (x) =
∑x

y∈{0,...,100} Pr[X = y|h]. We then draw a number ξ from a

uniform distribution on [0, 1]. We assign a choice x∗ if F (x∗ − 1) ≤ ξ < F (x∗) with F (−1) = 0.
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We note, however, that in many CTB experiments subjects see several questions presented

simultaneously on the same sheet of paper or on the computer screen. Therefore, the order at

which subjects answer questions may not necessarily coincide with the order of presentation,

which typically has monotonic structure as described above. Even with this caveat in mind, the

“monotonic” Fixed rule will be a useful benchmark to compare against EC2 algorithm.

4.4 Results

The primary variables of interests are: (i) speed of underlying parameter recovery, (ii) frequency

of correct parameter recovery, and the eUects of noisiness in choices and reward magnitudes.

We compare the performance of EC2 algorithm against two benchmarks, Fixed and Random,

speciVcally on these aspects.

We introduce some notation that becomes useful later. Suppose we run S iterations of of R

questions under true model h0, where each iteration consists of the following steps: Let µsr(h|h0)
denote the posterior belief of a hypothesis h in round r of iteration s, when h0 is the true model,

µ̄r(h
0|h0) =

∑S
s=1 µ

s
r(h|h0)/S denote the posterior belief of the true model averaged over all

iterations, hMAP
s = argmax

∑R
r=R−n+1 µ

s
r(h|ho)/n denote the maximum a posteriori (MAP) esti-

mate given by average beliefs of last n rounds in iteration s, and hits(h0) = 1{hMAP = h0} ∈
{0, 1} is an indicator for MAP matching true model in iteration s.

Accuracy of parameter recovery. The EC2 algorithm recovers the underlying preference pa-

rametersmore accurately, andmore quickly, compared to two benchmark cases. Figure 4 compare

hit rates of EC2 and Fixed, using the MAP estimates given by the average posteriors from the V-

nal Vve rounds. Panels A to C in each row represent the same information, but are color-coded

based on the parameter values of the underlying hypotheses. Since we take hit rates from EC2

algorithm on the y-axis, data points appearing above the 45-degree line, as in this Vgure, indicate

that EC2 algorithm is more accurate (at the end of the simulation), compared to Fixed question

design. We also Vnd better performance of EC2 compared to Random (Figure C.1 in Appendix C),

and Fixed and Random are close (Figure C.2 in Appendix C).

Comparing distributions of hit rates between panels (within each row) or between rows fur-

ther reveals the following. First, whether or not the algorithm can achieve higher performance

depends on the underlying parameter values, especially α (see panel A in each row of the Vg-

ure). Regardless of the algorithm, there is a fundamental diXculty in accurately recovering utility

functions which are “suXciently concave.” Other two parameters, on the other hand, do not have

such clear eUects in accuracy.
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Figure 4: ‘Hit rates” comparison between EC2 and FIxed in simulation 1A (top row), 1B (second row), 2A

(third row), and 2B (last row). Each panel is color-coded by the parameter value, and it shows fundamental

diXculty in recovering smaller α’s.

Second, as expected, noisier choices reduce overall performance of the algorithms (comparing

Vrst and second row, or third and fourth row). Even EC2 algorithm sometimes produce hit rates

less than 0.5.

Third, simulations from diUerent reward magnitudes (rows 1 and 2 against rows 3 and 4) do

not produce dramatically diUerent patterns of hit rates.
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Speed of parameter recovery. Next, we argue that EC2 algorithm works faster than the bench-

marks. Figure 5 below show the time series of posterior standard deviation of each parameter (α

in panel A, δ in panel B, and β in panel C; each row displays results from each simulation). The

solid lines represent the dynamics of the median of posterior standard deviations after round r

response, across all simulations s = 1, . . . , S and all true underlying model h0 ∈ H. The shaded
bands represent inter-quartile range of standard deviations at each point in time.

We observe: (i) Both EC2 and Random algorithms reduce a lot of uncertainty by 10-th ques-

tion; (ii) All three question selection rules perform comparably in identiVcation of α; (iii) Fixed

rule performs worse especially in identiVcation of δ (the lines look “steps” because time frames

change after every Vve questions); (iv) higher degree of noise in choices stretch the inter-quartile

range of standard deviations. Overall, the Vgure conVrms that EC2 is faster than the benchmarks.

The dynamics of posteriors over true (assumed) model is another measure of speed with

which we cam compare diUerent question selection rules. Figure C.3 in Appendix C presents

µ̄r(h
0|h0), r = 1, . . . , 45, for several combinations of (α, δ, β) in simulation 1A. The EC2 algo-

rithm always gives higher posterior beliefs compared to other two benchmarks, but the speed

of updating and the Vnal level of the posterior depend crucially on the underlying true model

h0. For example, it suUers to identify parameters when utility function has large curvature

(α = 0.7675; top right panel in Figure C.3),

Computation speed of EC2. In order for the DOSE method to be a “good” adaptive design

algorithm, it has to calculate the informational value of questions and present the next question

to the subjects instantly. Under the sizes of the design space and the hypothesis space used in

the simulations (300 and 175, respectively), it takes about 8-10 seconds to initialize the set of all

questionsQ and hypothesesH, and takes about 50-70milliseconds to prepare the next question.

Therefore, in experiments of this size the subjects will not have to wait long between questions.

5 Experimental Design

Simulation exercises presented in the previous section establish the power of our application of

the adaptive question selection mechanism. We now examine usefulness of this new design in

empirical applications, using online (hypothetical) experiments.
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Figure 5: Posterior standard deviation over time in simulation 1A (top row), 1B (second row), 2A (third

row), and 2B (last row). The 25-percentile, median, 75-percentile for each algorithm are presented.
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5.1 Design and Implementation

The experiment was conducted using Amazon’s Mechanical Turk platform (hereafter AMT or

MTurk). The platform has become popular in any domains of experimental social sciences, and

detailed explanations are presented, for example, in Goodman et al. (2013), Horton et al. (2011),

Mason and Suri (2012), and Paolacci et al. (2010).

We conduct experiments with hypothetical choices. One may argue that hypothetical choice

tasks conducted on AMT would deliver quite diUerent results from incentivized laboratory ex-

periments. However, available evidence show that this is not the case—time preference estimates

from Montiel Olea and Strzalecki (2014), Ericson and Noor (2015), and Hardisty et al. (2013) are

all comparable to what we usually observe in incentivized experiments. Other studies, such as

Bickel et al. (2009), Johnson and Bickel (2002), Madden et al. (2003, 2004), and Ubfal (2016), also

found no eUects of incentives.

We use the parameter speciVcations that are exactly same as those in simulation 2A, and we

set the number of questions to 20. For the Fixed rule, we use the sequence of questions presented

in Table D.3 in Appendix D. One limitation in the current design is that the temperature param-

eter λ is Vxed at the same level across treatments and subjects. We plan to address this issue in

the future research.

Each worker received a $3 participation fee after completing all 20 questions and an exit

survey. Since the entire experiment took about 15 to 20 minutes, the hourly wages for those

workers were around $10, which is quite high by AMT standards.

5.2 Results

5.2.1 Preference Parameter Estimates

The Vrst interesting data are the estimated values, and precision, of the preference parameters

(α, δ, and β). We Vrst present evidence from the values computed from the subject-speciVc

Bayesian posterior distributions in the last four (20%) trials.

Consider β values (present-biasedness) as a speciVc example. For each subject and round

r the EC2 procedure derives posterior probabilities of the seven discretized β values in the hy-

pothesis spaceH. The mean of the posterior distribution and its standard deviation represent the

subject’s estimate and accompanying precision. For pairs of parameters these data can be repre-

sented in a scatter plot. Plotting the pairs gives evidence about whether there is any correlation,

across subjects, between parameter values (e.g., do those who are present-biased, as evidenced

by low β, discount the future more or less, as evidenced by the value of δ?).
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Figure 6: Scatterplots of estimated parameters. Each dot represents single subject’s mean and lines rep-

resent standard deviation, both from posterior belief averaged across the last four questions.

The plotted bivariate conVdence bars are shown in Figure 6. Several features of the estimates

can be seen in these Figures:

1. Many estimates, particularly curvature α and discount factor δ, are on the boundary near

the maximum or minimum of support of the data-driven priors. This is generally a sign

that the Bayesian priors need to be stretch out further to better Vt subjects who have

unusually high or low parameter values. Keep in mind that after the data are collected,

they can be reanalyzed using any Bayesian priors. The particular data-driven priors that

we used only constrained the sequence of budget lines that each subject faced.

2. Most estimates of δ (95.5%), and most estimates of β (66.2%) are below one. The corre-

sponding percentages for those who have posteriors larger than 0.9 on values δ < 1 and

β < 1 are 94.7% and 35.2%, respectively.

3. There are substantial diUerences in how precisely diUerent subjects’ parameter values are
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estimated. Table 6 presents quartiles of means and standard deviations calculated from

posteriors averaged across last four rounds. The quartiles of mean parameters are quite

similar across diUerent algorithms, but Fixed and Random sequences generate much larger

standard deviations than EC2.

4. Pairs of parameters are not very correlated across subjects. While the procedure is not

optimized to estimate cross-parameter correlation, these data suggest that the constructs

are rather separate.

5. The values we estimate are comparable to those in previous CTB experiments. Recall that

we the method starts with a data-driven prior constructed from estimates from Andreoni

and Sprenger (2012a), Andreoni et al. (2015), and Augenblick et al. (2015). The distributions

of the means of posterior parameter distributions do not move much away from the prior

means. Our median β estimates is close to 1, which is higher than some of the recent

studies Vnding signiVcant present bias (e.g., Balakrishnan et al., 2015; Bousquet, 2016; Sun

and Potters, 2016). This result could be due to the hypothetical procedure, which does not

generate a strong biological desire for the immediate reward.

5.2.2 How Rapidly Do Estimates Become Precise?

Next we present some statistics illustrating how rapidly the diUerent sequencingmethods achieve

precision. Figure 7 shows “survival” curves (based on the actual choices, and averaged across

subjects). These curves count how many hypothesized parameter conVgurations have posterior

probability above a particular cutoU (in these Vgures, the cutoU is 0.01). A good method will re-

duce the set of surviving hypotheses rapidly, which will be evident visually as a steeply plunging

curve. For example, the procedure starts with 175 diUerent three-parameter (α, δ, β) hypotheses,

each with prior probability of either 0.004 or 0.008 (see Table 4). After Vve questions, on average

15, 28, and 28 hypotheses survive using EC2, Fixed, and Random procedures (panel A of Figure 7).

The results for 35 diUerent two-parameter (δ, β) hypotheses are similar, although the advantage

of EC2 is a bit less pronounced (panel B of Figure 7). Another way to measure the advantage is to

Vx the number of surviving hypotheses after Vve questions, and compute how many questions

are needed, using Fixed or Random sequences, to achieve the number of surviving hypotheses.

The answers are 10 in both cases. So regardless of how the speedup advantage is measured, the

EC2 procedure is about twice as good. 22

22Note also that the Fixed method is slightly inferior to Random. Intuitively, in Fixed-sequence designs the design

may get stuck using questions which are not providing information which is useful for estimating parameters.
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Table 6: Quartiles of posterior means and posterior standard errors from three conditions. The posterior

beliefs are averaged over last four rounds.

Percentiles

Algorithm Variable Min 25% 50% 75% Max

EC2 Mean α 0.7675 0.9016 0.9820 0.9833 0.9833

Std. dev. α 8.65× 10−15 1.81× 10−14 5.26× 10−5 2.56× 10−3 6.70× 10−2

Mean δ 0.994 0.9945 0.9972 0.9991 0.9992

Std. dev. δ 6.79× 10−68 5.19× 10−9 3.40× 10−7 1.86× 10−4 1.35× 10−3

Mean β 0.8840 0.9401 1.0000 1.0000 1.1233

Std. dev. β 4.94× 10−10 2.90× 10−5 8.08× 10−5 1.13× 10−2 3.10× 10−2

Fixed Mean α 0.7675 0.9794 0.9833 0.9833 0.9833

Std. dev. α 3.15× 10−13 8.79× 10−9 3.48× 10−5 1.84× 10−3 3.70× 10−2

Mean δ 0.9945 0.9955 0.9975 0.9989 1.0012

Std. dev. δ 7.14× 10−11 5.04× 10−6 2.08× 10−4 5.92× 10−4 1.37× 10−3

Mean β 0.8841 0.9786 0.9952 1.0112 1.0376

Std. dev. β 1.04× 10−4 4.91× 10−3 1.14× 10−2 1.60× 10−2 3.45× 10−2

Random Mean α 0.7675 0.9520 0.9831 0.9833 0.9833

Std. dev. α 1.05× 10−11 3.41× 10−8 2.23× 10−4 2.45× 10−3 5.82× 10−2

Mean δ 0.9945 0.9945 0.9972 0.9982 1.0012

Std. dev. δ 2.84× 10−34 4.71× 10−11 1.45× 10−5 2.75× 10−4 1.01× 10−3

Mean β 0.8841 0.9514 0.9918 1.0164 1.1237

Std. dev. β 8.92× 10−7 7.31× 10−3 1.08× 10−2 1.79× 10−2 3.42× 10−2

Another measure of quality is how precisely parameters are estimated partway through an

experiment. To illustrate, we computed the distributions of standard errors across subjects af-

ter 10 budget line questions had been asked. Figure 8 shows the kernel-smoothed density func-

tions. It is evident that the EC2 method leads to many more low standard errors, for β and δ,

than the other methods (although there is no diUerence for α).

Finally, it is notable that nearly half the responses are choices of either 0 or 100 tokens

allocated to the later reward date. The high frequency of these extreme “corner” allocations has

been observed in many studies using CTB.

Because the design is Vxed it persistently asks “uninteresting” questions. The Random design does not get stuck in

this way.
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Figure 7: Speed of achieving parameter precision. A particular hypothesized set of parameter triple is

deVned as “surviving” after a series of questions if its posterior probability after the questions is larger

than 0.01. (compared to the prior probability of 0.004 or 0.008). A better method will reduce the set of

surviving hypotheses rapidly; in better methods, the lines plunge downward quickly. (A) Survival rates

for three-parameter (α, δ, β) hypotheses for the three methods EC2 (purple), Fixed sequence (green) and

Random (orange). (B) Survival rates for two-parameter (δ, β) hypotheses. In both (A) and (B), all three

curves drop sharply after just a small number of questions. After Vve questions, the EC2 method leaves

about half as many hypotheses surviving as the other two methods. Note also that the Fixed method

is slightly inferior to Random. Intuitively, in Fixed-sequence designs the design may get stuck using

questions which are not providing information which is useful for estimating parameters. Because the

design is Vxed it persistently asks “uninteresting” questions. The Random design does not get stuck in

this way.

Corner choices are not unreasonable. But suppose a person is consistently choosing, say, 100

token allocations to the later reward, and 0 to the sooner reward, for several diUerent budget

lines in a row. Such a pattern of persistent choices of 100 implies that the budget lines which

were chosen are not eXciently determining the strength of preference for allocations to the earlier

reward. An eXcient method would quickly locate a budget line for which some tokens are

allocated to the sooner reward.

More generally, in a good method allocations should be negatively autocorrelated across trials

(e.g., subjects who are choosing corners should Wip back and forth between allocating 0 and 100

on consecutive trials quite often). As an illustration, Figure 9 take three “representative” subjects

from the EC2, Fixed, and Random conditions (from top to bottom) and plots the dynamics of
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Figure 8: Kernel-smoothed densities of posterior standard errors of three parameters after 10 questions.

sooner allocation percentages (panel A) and a scatterplot between “% sooner in question r + 1”

and “% sooner in question r” (panel B). The subject in the Fixed condition changed his/her sooner

allocation monotonically, which makes sense by design of the sequence (asking four questions

in the same time frame, from low gross interest rate to high, and then move on to next Vve with

diUerent time frame). The subject in the Random condition chose corners frequently, but s/he

sometimes stuck to one corner (between questions 11 and 16, for example). Unlike those two, the

subject from EC2 condition Wipped back and forth between two corners with high frequency—

s/he never stopped at one corner for more than three questions in a row.

Figure 10 generalizes this idea and plots the cumulative distribution functions of consecutive-

trial autocorrelations for the three sequencing methods, across subjects (where a separate au-

tocorrelation is computed for each subject). The Vxed sequence generates hardly any nega-

tive autocorrelations. For the EC2 method most autocorrelations (31/44 = 0.70) are negative,

and nearly a quarter are around −0.50. Even though we cannot reject the null hypothesis of

equal distribution between EC2 and Random using the two-sample Kolmogorov-Smirnov test
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Figure 9: (A) Dynamics of percentages of tokens allocated to sooner payment. (B) Lagged scatterplot

between sooner allocation percentages between two consecutive time periods.

(p = 0.1278), there is a qualitative diUerence between those two distributions. Among the 31

subjects who have negative autocorrelation, 11 of those values are signiVcant at 5% level in EC2.

In Random, on the other hand, there are only three signiVcantly negative autocorrelations out

of 27.

6 Possible Strategic Manipulation

Experimental economists have found it prudent to treat our subjects as (possibly) intelligent

enough to think very carefully about how they should behave in an experiment, in order to earn

more money.
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Figure 10: Empirical CDFs of correlation coeXcient.
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Figure 11: Empirical CDFs for the fraction of interior choices. No two pairs of CDFs are signiVcantly

diUerent according to two-sample Kolmogorov-Smirnov test.

This concern for how conniving subjects might be, while perhaps a bit paranoid, can help to

expose weaknesses in design that could jeopardize inference, and which are often easily repaired.

(It is like worrying in advance about black hat cyberattacks when designing cyber security.)

In the case of adaptive experimental design, the obvious concern is that subjects could ‘game’

or strategize by making choices in early trials which increase the quality of choices that are

available to them in future trials.

In adaptive designs, subjects are likely to misrepresent their true preferences in some choices

if all of the following chain of conditions hold: (i) they believe that future test choices depend
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on previous responses; (ii) they can compute how to misrepresent preferences in early choices

to create better future choices (as evaluated by their own preferences); and (iii) the value of

misrepresentation is high enough to be worthwhile. We present arguments and evidence that

misrepresentation resulting from the chain of conditions (i)-(iii) is likely to be rare. And if misrep-

resentation does occur, it could be easily detected and is not likely to lead to wrong conclusions

about revealed preferences which cannot be undone.

• Does strategizing pay? To partially answer this question, it is helpful to establish an upper

bound on the maximum gain from strategizing, for a particular design and player type.

The upper bound on the marginal gain is likely to be low. Here’s why: In later periods,

it does not pay to strategize since doing makes suboptimal immediate choices. And in

early periods, strategizing is immediately costly for the same reason. So there is a natural

tradeoU between the cost of strategizing in a period—the utility losses from deliberately

making the wrong choices—and the future gains from improved choice sets. It could be

that in a 10-period experiment, for example, strategizing is only beneVcial in the Vrst three

periods. If so, the posterior probabilities computed after 10 periods might be close to the

correct posteriors because they include 7 periods of non-strategizing choice data after three

periods of misleading data. It is also possible that when ranking diUerent subjects by

their risk-aversion, for example, we can recover an approximately correct ranking across

subjects even if manipulation leads to biased estimates of their means.

• Can strategizing be detected? Strategizing will typically leave clear Vngerprints in the

data from choices across a sequence of questions. In typical cases without strategizing, the

posterior probability of the most likely hypothesis—as judged from Vnal round result– goes

up across the trials. In contrast, a strategizing respondent will appear to be one hypothesis

type in early trials, and then revert to their true type in later trials (as the future beneVt

of strategizing shrinks). This will leave a telltale pattern of posterior probabilities veering

from one type to another, from earlier to later trials. This is not evident in our data.

• How can strategizing be limited? There are several possible ways strategizing could be

limited, presuming one budget line will be chosen at random at the end of the experiment

as a basis for actual payment (the norm in experimental economics). The best remedy is

ingenious and simple: Choose randomly from the entire design space of possible budget

lines. 23 Do not choose from the set of lines that were presented. (Note that if the chosen

23This idea was suggested by Cathleen Johnson. The Prince (acronym summarizing principles that deVne the
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budget line is one that was not presented during the adaptive question selection, the sub-

ject has to make a fresh choice.) The key to this method is that strategizing does not pay

because it does not improve the quality of the budget lines that will be used to eventually

determine the payment. Each of the entire set of budget lines is equally likely, regardless

of what the subject chooses. (The only Waw in this method is that it lowers the proba-

bility that any of the actual choices that are made during the experiment will determine

actual payment.) An alternative method is to tell the subjects that all their choices will be

used to estimate their preferences, and the estimated preferences will be used to choose

an allocation from a diUerent budget line (Krajbich et al., forthcoming). 24 In this method,

the subjects are essentially “training" an algorithm, much as choices of Amazon books are

training a recommender system.

7 Conclusion

In this paper we described and applied a method, called DOSE, for choosing an informationally-

optimal sequence of questions in experiments. This method should be useful to the many eco-

nomics experimenters who are currently using those methods in lab and Veld experimenters, and

in surveys, and would value doubling the time at which quickly parameters can be estimated.

The Vrst empirical Vnding is that the distributions of estimated β, δ, and α parameter are

similar to those observed earlier. The second, novel, Vnding is that the EC2 method is able to

estimate parameters much more precisely during the middle part of an experiment– about twice

as fast.

If one accepts the value of optimal adaptive design, there is a lot of interesting work to do.

Here is a short to-do list:

method: priority, instructions to experimenter, concreteness, entirety) method of Johnson et al. (2015), begins with

a real choice situation (RCS), which is randomly selected from a set of all possible questions. The RCS is written

on a sheet of paper and put in a sealed envelope. The experimenter asks subjects to give “instructions” about the

real choice to be implemented. At the end of the experiment, the experimenter opens the envelope and selects the

subject’s desired option using the instruction provided by the subject.
24In their application of DOSE method in a binary-choice risk preference elicitation task, subjects were told that:

(i) subjects’ responses during the task were hypothetical and would not count for the Vnal payment; (ii) those

hypothetical choices would be used to determine their risk preferences; (iii) a new question that had not been asked

during the task would be drawn at random, and a computer algorithm would make a choice for the subject based on

the hypothetical answers. Since every decision made during the task would inWuence how the computer algorithm

would decide in a new question that determines the payment, the proposed mechanism would mute the subjects’

incentive to misreport.
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1. Other choice domains: There are many areas of behavioral economics in which multiple

theories or parametric frameworks are used to explain the same stylized facts. As noted

in the introduction, adaptive optimal design is one way to make progress when there are

multiple well-speciVed theories, and some intuitions (or evidence, as implemented here)

about a prior probability distribution of parameters. These methods could be applied to

distinguish theories about: Risky choice; social preferences and fairness; non-equilibrium

choices; and learning in games. 25

2. Multiple (non myopic) question selection: Our implementation chooses one question at a

time. It is possible that choosing sequences of two or more questions would be a substan-

tial improvement, at the cost of more computation. For example, many people have an

intuition that when choosing questions to estimate β and δ, say, it could be better to use a

two-stage procedure like the following: Choose questions to estimate δ Vrst (by imposing

a front-end delay for the earlier reward, so all valuations depend on β), then transition to

estimate β in the second stage. The myopic implementation cannot do this automatically

because it cannot select a “package” of multiple questions to capture sequential informa-

tion complementarities. That is, a δ-focussed question in trial 4 might be informationally

valuable only if it is followed by two more δ-focussed questions. Our myopic procedure

will not include this complementarity. However, the method can be easily adapted to see

if selecting sequences of trials non-myopically is a large improvement.

3. Optimal stopping: Part of experimental design is when to stop asking questions. It is easy

to compute an optimal stopping rule in theory: Quit asking questions when the marginal

cost begins to exceed the expected marginal information beneVt (or some loss function

summarizing the expected possible beneVts of learning more). However, in practice these

cost and beneVt numbers are not always easy to compute.

4. Using non-choice data: The procedure uses only observed choices. In our experiments,

however, we also observed response times (RTs) and the positions of a slider bar over time.

These non-choice data could contain information that would help diagnose what theories

describe behavior and what parameter values are. One potential example exploits the

common correlation between how close in value two choices are, and how long a decision

takes. Typically, “diXcult” decisions—when objects are close in value—are slower and

25These methods could also be applied to identify individual speciVc “boundaries” of context eUects, such as

compromise and asymmetrically dominated eUects (Huber et al., 1982; Simonson, 1989). The method would allow

researchers (and marketers) to quickly identify the best placement of decoy options.
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have longer RTs (see Clithero, 2016b). Suppose there are two hypotheses about possible

behavior, C and F. Also suppose that for a particular budget line under hypothesis C the

allocations on the line are close in value and under the other hypothesis F they are far

apart in value. A slow RT is more consistent with hypothesis C than with hypothesis F,

and could be used to update probabilities much as observed choices are. 26

Finally, we think optimally adaptive design is relevant to the recent growth of interest in

scientiVc reproducibility (to which we have also contributed; see Camerer et al., 2016). Concern

about reproducibility is partly about weak statistical power, partly about publication bias and

snowballing of attention to weak results, and partly about incentives of career-concerned scien-

tists, journal editors and referees, funding agencies, science journalists, and others. All of these

elements are important and will probably be improved upon, but let’s consider only statistical

power for now.

Statistical power obviously depends on sample size, variability in responses, and the type

of statistical tests that are used to analyze data. Experimental design also matters. What we

have shown in this paper is that for one type of choice experiment which is widely used in

experimental economic, there is a sweet spot for short experiments—about 5-10 trials—in which

about twice as much information is generated by an adaptive design. This innovation is not

that diXcult to implement, and will immediately improve the quality of inference and therefore

improve reproducibility.

26Many previous studies have made this point and used non-choice data. Some recent papers include Clithero

(2016a), Franco-Watkins et al. (2016), Frydman and Krajbich (2016), Konovalov and Krajbich (2016).
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Supplementary Materials

A List of Studies Using Convex Time Budget Design

The following table lists of studies using Convex Time Budget design. As a Vrst step, we used

Web of Science and Google Scholar to identify all articles that cited Andreoni and Sprenger

(2012a). This produced a list of about 300 papers which were then narrowed down to 30, in-

cluding 16 published articles. In the next step, we used Google Scholar and the Social Science

Research Network (SSRN) to search for keywords “convex time budget,” which returned a list

of about 140 papers but all the relevant papers within that set had already covered in the Vrst

step. 27

The column # budgets indicates the total number of questions each subject completed during

the study, and the column # points indicates the number of feasible options on each budget.

The column Set Q is Fixed if all subjects in the study faced the same set of questions (order

can be randomized across subjects) and Random if the set of questions was independently and

randomly generated for each subject in the study. The column Budget line indicates whether the

experimental interface presented two-dimensional budget lines.

27We performed our initial data collection in January 2016, and the table was updated after our second search in

August 2016.
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Table A.1: Experiments with CTB design.

Study Location Object # budgets # points Set Q Budget lines Interface

Alan and Ertac (2015) Classroom (Turkey) Gifts 4 6 Fixed Yes Physical

Alan and Ertac (2016) Classroom (Turkey) Gifts 4 6 Fixed Yes Physical

Andreoni and Sprenger (2012a) Laboratory (US) Money 45 101 Fixed No Input box

Andreoni and Sprenger (2012b) Laboratory (US) Money 84 101 Fixed No Paper and pencil

Andreoni et al. (2015) Laboratory (US) Money 24 6 Fixed No Paper and pencil

Andreoni et al. (2016) Field (Pakistan) EUort 1 NA Random No Slider

Angerer et al. (2015) Classroom (Italy) Gifts 1 6 Fixed No Paper and pencil

Ashton (2015) Laboratory (US) Money 55 101 Fixed No Slider

Augenblick et al. (2015) [main] Laboratory (US) Money 20 NA Fixed No Slider

Augenblick et al. (2015) [main] Laboratory (US) EUort 20 NA Fixed No Slider

Augenblick et al. (2015) [replication] Laboratory (US) Money 18 NA Fixed No Slider

Augenblick et al. (2015) [replication] Laboratory (US) EUort 18 NA Fixed No Slider

Balakrishnan et al. (2015) Laboratory (Kenya) Money 48 NA Fixed No Slider

Barcellos and Carvalho (2014) Survey (ALP) Money 6 NA Fixed No Input box

Blumenstock et al. (2016) Field (Afghanistan) Money 10 3 Fixed No Paper and pencil

Bousquet (2016) Laboratory (France) Money 40 21 Fixed No Input box

Brocas et al. (2016) Laboratory (US) Money 45 11 Fixed No Paper and pencil

Bulte et al. (2016) Field (Vietnam) Money 20 NA Fixed No Paper and pencil

Carvalho et al. (2016a) Survey (ALP) Money 12 NA Fixed No Number entry

Carvalho et al. (2016b) Field (Nepal) Money 4 3 Fixed No Paper and Pencil

Cheung (2015) Laboratory (Australia) Money 84 101 Fixed No Paper and pencil

Choi et al. (2015) [lab] Laboratory (US); Survey (CentER) Money 50 NA Random Yes Point and click

Choi et al. (2015) [survey] Survey (CentER) Money 50 NA Random Yes Point and click

Clot and Stanton (2014) Field (Uganda) Money 10 3 Fixed No Paper and pencil

Clot et al. (forthcoming) Field (Uganda) Money 15 3 Fixed No Paper and pencil

Giné et al. (forthcoming) Field (Malawi) Money 10 21 Fixed No Physical

Hoel et al. (2016) Laboratory (Ethiopia) Money 6 6 Fixed No Physical

Janssens et al. (2016) Field (Nigeria) Money 10 11 Fixed No Paper and pencil

Kuhn et al. (2015) Laboratory (France) Money 45 17 Fixed No Input box

Liu et al. (2014) Laboratory (China/Taiwan) Money 10 301 Fixed No Paper and pencil

Lührmann et al. (2015) Classroom (Germany) Money 21 4 Fixed No Paper and pencil

Miao and Zhong (2015) Laboratory (Singapore) Money 56 101 Fixed No Paper and pencil

Rong et al. (2016) Laboratory (US) Money 36 101 Fixed No Paper and pencil

Sawada and Kuroishi (2015) Field (Japan/Philippines) Money 24 5 Fixed No Paper and pencil

Shaw et al. (2014) Laboratory (US) Money 28 or 36 101 Fixed No Number entry

Slonim et al. (2013) Classroom (Australia) Money 6 6 Fixed No Paper and pencil

Stango et al. (2016) Survey (ALP) Money 24 101 Fixed No Number entry

Sun and Potters (2016) Laboratory (Netherlands) Money 35 NA Fixed No Slider

Sutter et al. (2015) Classroom (Italy) Gifts 1 6 Fixed No Paper and pencil

Yang and Carlsson (2015) Field (China) Money 10 21 Fixed No Paper and pencil
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B Background on the EC2 Criterion

In this appendix, we provide a short theoretical background on the Equivalence Class Edge Cut-

ting (EC2) criterion proposed originally in Golovin et al. (2010).

In order to model Bayesian active learning with noisy observations, Golovin et al. (2010)

introduced the Equivalence Class Determination problem, in which the set of hypotheses H is

partitioned into ` equivalence classesH1, . . . ,H` such that
⋃`
i=1Hi = H andHi∩Hj = ∅ for all

i 6= j. These equivalence classes essentially bin together all the predictions made by a particular

hypothesis with the noise incorporated, called noisy copies of the hypothesis. Intuitively speak-

ing, this is like simulating choices with noise and labeling it according to the data-generating

hypothesis. It would therefore be easier to understand the rest of this section by looking at the

set of hypothesisH not as the set of all combinations of parameters but as the set of all possible

observations when we exhaustively ask questions in Q, i.e., H = XQ in this case. In order to

avoid confusion, let hin denote the n-th noisy copy in the i-th equivalence class Hi to which

original hypothesis hi belongs. In creating noisy copies of hypothesis hi, we distribute Pr[hi]

uniformly overHi.

The objective of learning is to identify in which class Hi the true hypothesis lies in (rather

than to identify what the true hypothesis is). Let

E =
⋃

1≤i<j≤`

{{h, h′} : h ∈ Hi, h′ ∈ Hj} (9)

denote the set of edges consisting of all pairs of hypotheses belonging to distinct classes. A

question q asked under true hypothesis h cuts edges

Eq(h) = {{h′, h′′} : h′(q) 6= h(q) or h′′(q) 6= h(q)}, (10)

where h(q), h′′(q), h′′(q) ∈ X are shorthand representations of (noisy) responses to question q

by hypotheses h, h′, h′′. Now a weight function w : E → R+ by w({h, h′}) = Pr[h] · Pr[h′] for

any {h, h′} ∈ E . With slight abuse of notation, the weight function is extended to sets of edges

E ′ ⊆ E by w(E ′) =
∑
{h,h′}∈E ′ w({h, h′}). Now, a function φ on the pair of questions asked up to

round r and true hypothesis, (qr, h), is deVned as the weight of the edges cut

φ(qr, h) = w

 ⋃
q∈{q1,...,qr}

Eq(h)

 (11)

and the EC2 informational value is deVned as the expected reduction in weight of the edges cut

∆∗EC2(q|xr) = Eµr(·|xr)[φ((qr, q), h)− φ(qr, h)]. (12)
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Golovin et al. (2010) proved that the EC2 informational value function ∆∗EC2 is strongly adap-

tively monotone and adaptively submodular (Golovin and Krause, 2010, 2011; Krause and Golovin,

2014). The Vrst property, strong adaptive monotonicity, says that φ((qr, q), h) ≥ φ(qr, h) holds

(i.e., “adding new information never hurts”). The second property, adaptive submodularity, says

that ∆∗EC2(q|xr′) ≥ ∆∗EC2(q|xr), where xr′ is a subvector of xr, holds (i.e., “adding information

earlier helps more”). Golovin and Krause (2011) proved that an adaptive question selection rule

that myopically (“greedily,” in their word) maximizes ∆∗EC2 could achieve near-optimal perfor-

mance.

Since it can be challenging to keep track of the equivalence classes, Golovin et al. (2010)

proposed an approximation of ∆∗EC2 . Note that the weight between any two equivalence classes

Hi andHj is given by

w(Eij) =
∑

hi∈Hi,hj∈Hj
Pr[hi] · Pr[hj] =

∑
hi∈Hi

Pr[hi]
∑
hj∈Hj

Pr[hj] = Pr[hi] · Pr[hj] (13)

where Eij = {{hi, hj} : h ∈ Hi, h ∈ Hj} is the set of edges connecting classes Hi and Hj . The

last equality follows since we distributed Pr[hi] equally over all noisy copies in Hi. The total

weight is thus given by

∑
1≤i<j≤`

w(Eij) =

(∑̀
i=1

Pr[hi]

)2

−
∑̀
i=1

Pr[hi]
2 = 1−

∑̀
i=1

Pr[hi]
2, (14)

which in turn motivates the form of EC2 informational value ∆EC2 in equation (1).
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C Additional Figures
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Figure C.1: “Hit rates” comparison between EC2 and Random in simulation 1A (top row), 1B (second row),

2A (third row), and 2B (last row). Each panel is color-coded by the parameter value.
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Figure C.2: “Hit rates” comparison between Fixed and Random in simulation 1A (top row), 1B (second

row), 2A (third row), and 2B (last row). Each panel is color-coded by the parameter value.
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Figure C.3: Average posterior beliefs on true model µ̄r(h0|h9), taking simulation 1A as an example. Four

diUerent proVles of h0 are examined.
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Figure C.4: “Hit rates” comparison between EC2 and FIxed in simulation 1A (top row), 1B (second row),

2A (third row), and 2B (last row), at diUerent timings.
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D Parameters in Fixed Design

Table D.1: Parameters for simulation withD1.

# t k at at+k

1 0 21 0.18 0.18

2 0 21 0.17 0.18

3 0 21 0.16 0.18

4 0 21 0.15 0.18

5 0 21 0.14 0.18

6 0 35 0.18 0.18

7 0 35 0.17 0.18

8 0 35 0.16 0.18

9 0 35 0.15 0.18

10 0 35 0.14 0.18

11 0 42 0.18 0.18

12 0 42 0.17 0.18

13 0 42 0.16 0.18

14 0 42 0.15 0.18

15 0 42 0.14 0.18

16 7 21 0.18 0.18

17 7 21 0.17 0.18

18 7 21 0.16 0.18

19 7 21 0.15 0.18

20 7 21 0.14 0.18

21 7 35 0.18 0.18

22 7 35 0.17 0.18

23 7 35 0.16 0.18

24 7 35 0.15 0.18

25 7 35 0.14 0.18

# t k at at+k

26 7 42 0.18 0.18

27 7 42 0.17 0.18

28 7 42 0.16 0.18

29 7 42 0.15 0.18

30 7 42 0.14 0.18

31 28 21 0.18 0.18

32 28 21 0.17 0.18

33 28 21 0.16 0.18

34 28 21 0.15 0.18

35 28 21 0.14 0.18

36 28 35 0.18 0.18

37 28 35 0.17 0.18

38 28 35 0.16 0.18

39 28 35 0.15 0.18

40 28 35 0.14 0.18

41 28 42 0.18 0.18

42 28 42 0.17 0.18

43 28 42 0.16 0.18

44 28 42 0.15 0.18

45 28 42 0.14 0.18
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Table D.2: Parameters for simulation withD2.

# t k at at+k

1 0 14 1.03 1.03

2 0 14 1.00 1.03

3 0 14 0.97 1.03

4 0 14 0.94 1.03

5 0 14 0.91 1.03

6 0 21 1.03 1.03

7 0 21 1.00 1.03

8 0 21 0.97 1.03

9 0 21 0.94 1.03

10 0 21 0.91 1.03

11 0 28 1.03 1.03

12 0 28 1.00 1.03

13 0 28 0.97 1.03

14 0 28 0.94 1.03

15 0 28 0.91 1.03

16 14 14 1.03 1.03

17 14 14 1.00 1.03

18 14 14 0.97 1.03

19 14 14 0.94 1.03

20 14 14 0.91 1.03

21 14 21 1.03 1.03

22 14 21 1.00 1.03

23 14 21 0.97 1.03

24 14 21 0.94 1.03

25 14 21 0.91 1.03

# t k at at+k

26 14 28 1.03 1.03

27 14 28 1.00 1.03

28 14 28 0.97 1.03

29 14 28 0.94 1.03

30 14 28 0.91 1.03

31 28 14 1.03 1.03

32 28 14 1.00 1.03

33 28 14 0.97 1.03

34 28 14 0.94 1.03

35 28 14 0.91 1.03

36 28 21 1.03 1.03

37 28 21 1.00 1.03

38 28 21 0.97 1.03

39 28 21 0.94 1.03

40 28 21 0.91 1.03

41 28 28 1.03 1.03

42 28 28 1.00 1.03

43 28 28 0.97 1.03

44 28 28 0.94 1.03

45 28 28 0.91 1.03
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Table D.3: Parameters for AMT experiment.

# t k at at+k

1 0 14 1.03 1.03

2 0 14 1.03 1.06

3 0 14 1.03 1.09

4 0 14 1.03 1.12

5 0 21 1.03 1.03

6 0 21 1.03 1.06

7 0 21 1.03 1.09

8 0 21 1.03 1.12

9 0 35 1.03 1.03

10 0 35 1.03 1.06

11 0 35 1.03 1.09

12 0 35 1.03 1.12

13 14 14 1.03 1.03

14 14 14 1.03 1.06

15 14 14 1.03 1.09

16 14 14 1.03 1.12

17 14 21 1.03 1.03

18 14 21 1.03 1.06

19 14 21 1.03 1.09

20 14 21 1.03 1.12
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E Survey Instructions and Interfaces

After AMT workers accept the HIT and click on the link to our study website, they Vrst enter

their AMT worker IDs. They then see instructions for the experiment. The blue texts repre-

sent variables which depend either on the parameters the experimenter sets (PARTICIPATION-

FEE, TOKENVALUE, and ALLOCATION) or on the day subjects participated in the experiment

(DATE)

— Page 1 —

Welcome!

In this survey, you will be asked 20 questions about choices over how to allocate money between

two points in time, one time is “earlier” and one is “later.” Both the earlier and later times may

vary across questions. Please read the instructions in the following pages carefully.

Important: These questions are not designed to test you—there are no “correct” or “incorrect”

answers.

Those questions are all hypothetical scenarios but are designed to study how you make decisions.

The payment for completion of this HIT is $PARTICIPATION-FEE.
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— Page 2 —

How It Works

Please imagine the following hypothetical scenario.

For each question:

• Divide 100 tokens between two payment dates.

• Two dates: “earlier payment” and “later payment”, with potentially diUerent payoUs per

token.

• Pick favored allocation of tokens with slider.

As you will see, there is a trade-oU between the sooner payment and the later payment. As the

sooner payment goes down, the later payment goes up (and vice versa). Therefore, all you have

to do in each question is to select which combination of sooner AND later payment you prefer

the most by moving the slider to that location.

The sample question below is similar to the ones you will see today. This example shows:

• The choice to divide 100 tokens between the earlier payment on DATE1 and the later

payment on DATE2.

• The calendar indicates today by a RED box, the earlier payment date by an ORANGE shade,

and the later payment date by a BLUE shade.

• The table at the bottom of the screen indicates:

– Each token allocated to DATE1 is worth $TOKENVALUE1.

– Each token allocated to DATE2 is worth $TOKENVALUE2.

• If you were to allocate ALLOCATION1 tokens to DATE1 and ALLOCATION2 tokens to

DATE2, you would receive $OUTCOME1 on DATE1 AND $OUTCOME2 on DATE2.

<Calendar and table are displayed here>
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— Page 3 —

How to Use the Slider

Please imagine the following hypothetical scenario.

You can allocate 100 tokens between two payment dates using the slider. The table will be up-

dated instantly once you move the slider, showing current allocations of tokens and their implied

payment amounts.

The slider controls how many tokens you would like to allocate to the “early payment date.” The

allocation to the “later payment date” will be automatically calculated and displayed on the table.

• The initial location of the slider will be randomly selected in each question.

• You need to activate the slider by clicking on the pointer or anywhere on the line. After

its color changes to darker green, you can move the slider.

To familiarize yourself with the interface, please move the slider and check how the table would

respond.

<Calendar, table, and slider are displayed here>
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— Page 4 —

Your Hypothetical Earnings

Please imagine the following hypothetical scenario.

After Vnishing all questions, the computer will randomly pick one of the questions you were

asked about to determine your earnings. Your decision in the selected question determines the

amount you will receive on the early date and the later date, which will be displayed on the

screen.

Important: All questions are equally likely to be selected. This rule implies that it is in your best

interest to treat each decision as if it could be the one that determines your earnings.

Your Actual Earnings

When you are Vnished, you will receive a Completion Code that you must enter in the box below

to receive credit for participation. The payment for completion of the HIT is $PARTICIPATION-

FEE.

Even though your decisions will not add to your Vnal earnings, please take the problems

presented seriously.
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— Page 5 —

Important

• Payment dates may change between questions. Make sure to check the calendar and the

table when a new question starts.

• The value of tokens for each date may change between questions. Make sure to check the

table when a new question starts.

• Once you hit the PROCEED button, you cannot change your decision. You cannot go back

to previous pages, either. Note also that you CANNOT change the question by refreshing

the browser once it is displayed.

• The initial position of the slider will be randomly selected in each question.

• You can always read the instructions by clicking the “Need help?” button at the top-right

corner of the browser.
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Figure E.1: Sample screenshot of the interface.
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